Colorectal liver metastases are a common clinical problem and require more effective therapy. Kupffer cells (KC) perform many important homeostatic functions within the liver and may also possess the ability to mediate tumor cytotoxicity. We investigated the ability of human KC to mediate cytotoxicity against human colon adenocarcinoma targets (HT 29) in vitro. Unstimulated human KC were cytotoxic against the HT 29 targets at all effector/target ratios tested. This cytotoxicity was increased significantly (p less than 0.05) when the KC were stimulated with interferon-gamma and lipopolysaccharide. Human KC produced tumor necrosis factor (TNF), and KC stimulation significantly (p less than 0.05) increased secretion of this monokine. The addition of anti-TNF antibody to the KC-HT 29 cocultures completely neutralized all of the available TNF yet cytotoxicity was not affected, suggesting the participation of a membrane-bound form of TNF or other mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bjs.1800770937DOI Listing

Publication Analysis

Top Keywords

kupffer cells
8
human colon
8
colon adenocarcinoma
8
human
6
human kupffer
4
cells cytotoxic
4
cytotoxic human
4
adenocarcinoma colorectal
4
colorectal liver
4
liver metastases
4

Similar Publications

Spatially restricted and ontogenically distinct hepatic macrophages are required for tissue repair.

Immunity

January 2025

Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium. Electronic address:

Our understanding of the functional heterogeneity of resident versus recruited macrophages in the diseased liver is limited. A population of recruited lipid-associated macrophages (LAMs) has been reported to populate the diseased liver alongside resident Kupffer cells (KCs). However, the precise roles of these distinct macrophage subsets remain elusive.

View Article and Find Full Text PDF

The liver is an indispensable metabolic organ, responsible for accumulating and transporting various nutritional compounds in hepatocytes. However, the transport of these materials from the liver is an energetically intensive task because they contain a considerable number of hydrophobic components, including free cholesterol, and require specialized transfer proteins to shuttle these substances through an aqueous phase. Liver X receptors (LXRs) induce the expression of cholesterol transporters in macrophages to transport free cholesterol derived from apoptotic cells into extracellular space via high-density lipoproteins.

View Article and Find Full Text PDF

Background & Aims: Chronic hepatitis B (CHB) arises from a persistent hepatitis B virus (HBV) infection, complicating efforts for a functional cure. Kupffer cells (KCs), liver-resident macrophages, are pivotal in mediating immune tolerance to HBV. Although CD163 marks M2-polarized KCs, its precise role in HBV infection remains unclear and warrants further investigation.

View Article and Find Full Text PDF

Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.

View Article and Find Full Text PDF

Lysosomal stress due to the accumulation of nucleic acids (NAs) activates endosomal TLRs in macrophages. Here, we show that lysosomal RNA stress, caused by the lack of RNase T2, induces macrophage accumulation in multiple organs such as the spleen and liver through TLR13 activation by microbiota-derived ribosomal RNAs. TLR13 triggered emergency myelopoiesis, increasing the number of myeloid progenitors in the bone marrow and spleen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!