Background: Enterovirus 71 (EV71) is a common etiological agent of hand, foot and mouth disease (HFMD) in children. EV71 epidemics have been reported in Hong Kong in recent years, and yet the genetic information of EV71 strains circulating in our locality is limited. The objective of this study was to investigate the genetic evolution of these EV71 isolates in Hong Kong over a 7-year period.
Methods: Twenty-two EV71 isolates from Hong Kong during 2004-2010 were included for phylogenetic analysis using partial VP2-VP3, 2C and 3D regions. Eight EV71 strains were selected for complete genome sequencing and recombination analysis.
Results: Among the 22 EV71 isolates, 20 belonged to subgenotype C4 and 2 belonged to subgenotype C2 based on the phylogenetic analysis of partial VP2-VP3, 2C and 3D gene regions. Phylogenetic, similarity plot and bootscan analyses using complete genome sequences of seven EV71 isolates of subgenotype C4 supported that the "double-recombinant" strains of subgenotype C4 persistently circulating in Hong Kong should belong to a newly proposed genotype D. Further analysis revealed two clusters, subgenotypes C4b and C4a (proposed genotypes D1a and D1b respectively), with "genotype D1b" strains being predominant in recent years in Hong Kong. A distinct lineage of EV71 subgenotype C2 has emerged in Hong Kong in 2008. The evolutionary rate of EV71 was 3.1 × 10-3 nucleotide substitutions per site per year similar to that of other enterovirus, such as EV68, but was relatively lower than those of echovirus 30 and poliovirus. Molecular clock analysis using VP1 gene dated the time to the most recent common ancestor of all EV71 genotypes to 1900s, while the EV71 "double-recombinant" strains of "genotype D" were detected as early as 1998.
Conclusions: This study provides the molecular basis for proposing a new "genotype D" of EV71 and assigning a discrete lineage of subgenotype C2. EV71 strains of "genotype D" have been circulating in Hong Kong for over 7 years, with "genotype D1b" being predominant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716818 | PMC |
http://dx.doi.org/10.1186/1743-422X-10-222 | DOI Listing |
J Ovarian Res
January 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.
Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.
Cell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFJ Math Biol
January 2025
Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
In the past several decades, much attention has been focused on the effects of dispersal on total populations of species. In Zhang (EL 20:1118-1128, 2017), a rigorous biological experiment was performed to confirm the mathematical conclusion: Dispersal tends to enhance populations under a suitable hypothesis. In addition, mathematical models keeping track of resource dynamics in population growth were also proposed in Zhang (EL 20:1118-1128, 2017) to understand this remarkable phenomenon.
View Article and Find Full Text PDFSci Data
January 2025
Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong.
Black carp (Mylopharyngodon piceus) is one of the "four famous domestic fishes" in China and an important economic fish in freshwater aquaculture. A high-quality genome is essential for advancing future biological research and breeding programs for this species. In this study, we aimed to generate a high-quality chromosome-level genome assembly of black carp using Nanopore and Hi-C technologies.
View Article and Find Full Text PDFNat Commun
January 2025
KAUST Solar Center (KSC), Physical and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
The controlled growth of two-dimensional (2D) perovskite atop three-dimensional (3D) perovskite films reduces interfacial recombination and impedes ion migration, thus improving the performance and stability of perovskite solar cells (PSCs). Unfortunately, the random orientation of the spontaneously formed 2D phase atop the pre-deposited 3D perovskite film can deteriorate charge extraction owing to energetic disorder, limiting the maximum attainable efficiency and long-term stability of the PSCs. Here, we introduce a meta-amidinopyridine ligand and the solvent post-dripping step to generate a highly ordered 2D perovskite phase on the surface of a 3D perovskite film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!