Background: There are few studies using animal models in chest physical therapy. However, there are no models to assess these effects in newborns. This study aimed to develop a model of obstructive atelectasis induced by artificial mucus injection in the lungs of newborn piglets, for the study of neonatal physiotherapy.

Methods: Thirteen newborn piglets received artificial mucus injection via the endotracheal tube. X-rays and blood gas analysis confirmed the atelectasis.

Results: The model showed consistent results between oxygenation parameters and radiological findings. Ten (76.9%) of the 13 piglets responded to the intervention. This did not significantly differ from the expected percentage of 50% by the binomial test (95% CI 46.2-95%, P = .09).

Conclusions: Our model of atelectasis in newborn piglets is both feasible and appropriate to evaluate the impact of physical therapies on atelectasis in newborns.

Download full-text PDF

Source
http://dx.doi.org/10.4187/respcare.02352DOI Listing

Publication Analysis

Top Keywords

newborn piglets
16
model atelectasis
8
atelectasis newborn
8
artificial mucus
8
mucus injection
8
piglets
5
experimental model
4
atelectasis
4
newborn
4
piglets background
4

Similar Publications

Glyphosate-Based Herbicide Stress During Pregnancy Impairs Intestinal Development in Newborn Piglets by Modifying DNA Methylation.

J Agric Food Chem

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

Glyphosate-based herbicide (GBH), a feed contaminant, has been proven to impair the growth and development of humans and animals. Previous research has revealed that maternal toxin exposure during pregnancy could cause permanent fetal changes by epigenetic modulation. However, there was insufficient evidence of the involvement of DNA methylation in maternal GBH exposure-induced intestinal health of offspring.

View Article and Find Full Text PDF

Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H gas to ameliorate AKI is unknown.

View Article and Find Full Text PDF

Despite the WHO recommendations in favor of breastfeeding, most infants receive infant formulas (IFs), which are complex matrices involving numerous ingredients and processing steps. Our aim was to understand the impact of the quality of the protein ingredient in IFs on gut microbiota and physiology, blood metabolites and brain gene expression. Three IFs were produced using whey proteins (WPs) from cheese whey (IF-A) or ideal whey (IFs-C and -D) and caseins, either in a micellar form (IFs-A and -C) or partly in a non-micellar form (IF-D).

View Article and Find Full Text PDF

Background: Epinephrine is currently the only recommended cardio-resuscitative medication for use in neonatal cardiopulmonary resuscitation (CPR), as per consensus of science and treatment recommendations. An alternative medication, vasopressin, may be beneficial, however there is limited data regarding its effect on cardiac and brain tissue following recovery from neonatal CPR.

Aim: To compare the effects of vasopressin and epinephrine during resuscitation of asphyxiated post-transitional piglets on cardiac and brain tissue injury.

View Article and Find Full Text PDF
Article Synopsis
  • PDCoV is increasingly affecting newborn piglets, causing diarrhea, and poses significant challenges to the pig industry due to its potential for cross-species transmission.
  • A new PDCoV strain was isolated from piglets in China, showing high genetic similarity to other strains and notable amino acid mutations in its S protein that alter its structure and function.
  • The study confirmed that this strain damages the intestinal barrier of piglets, leads to clinical symptoms like diarrhea, and lays the groundwork for future vaccine and diagnostic development to combat piglet diarrhea.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!