The process of DNA mismatch repair is initiated when MutS recognizes mismatched DNA bases and starts the repair cascade. The Escherichia coli MutS protein exists in an equilibrium between dimers and tetramers, which has compromised biophysical analysis. To uncouple these states, we have generated stable dimers and tetramers, respectively. These proteins allowed kinetic analysis of DNA recognition and structural analysis of the full-length protein by X-ray crystallography and small angle X-ray scattering. Our structural data reveal that the tetramerization domains are flexible with respect to the body of the protein, resulting in mostly extended structures. Tetrameric MutS has a slow dissociation from DNA, which can be due to occasional bending over and binding DNA in its two binding sites. In contrast, the dimer dissociation is faster, primarily dependent on a combination of the type of mismatch and the flanking sequence. In the presence of ATP, we could distinguish two kinetic groups: DNA sequences where MutS forms sliding clamps and those where sliding clamps are not formed efficiently. Interestingly, this inability to undergo a conformational change rather than mismatch affinity is correlated with mismatch repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783165 | PMC |
http://dx.doi.org/10.1093/nar/gkt582 | DOI Listing |
J Pharm Anal
November 2024
National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
In this study, 34 deep eutectic solvents (DESs) were successfully prepared for the extraction of proanthocyanidin from Rhodiolae Crenulatae Radix et Rhizomes. The extraction process was optimized using single factor exploration and Box-Behnken design-response surface analysis. The extraction rate was significantly improved when the molar ratio of choline chloride to 1,3-propanediol was 1:3.
View Article and Find Full Text PDFmBio
December 2024
Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
In all kingdoms of life, the enzyme uridine diphosphate-glucose pyrophosphorylase (UGP) occupies a central role in metabolism, as its reaction product uridine diphosphate-glucose (UDP-Glc) is involved in various crucial cellular processes. Pathogens, including fungi, parasites, and bacteria, depend on UGP for the synthesis of virulence factors; in particular, various bacterial species utilize UDP-Glc and its derivatives for the synthesis of lipopolysaccharides, capsular polysaccharides, and biofilm exopolysaccharides. UGPs have, therefore, gained attention as anti-bacterial drug target candidates, prompting us to study their structure-function relationships to provide a basis for the rational development of specific inhibitors.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
The proteins SFPQ (splicing Factor Proline/Glutamine rich) and NONO (non-POU domain-containing octamer-binding protein) are mammalian members of the Drosophila Behaviour/Human Splicing (DBHS) protein family, which share 76% sequence identity in their conserved 320 amino acid DBHS domain. SFPQ and NONO are involved in all steps of post-transcriptional regulation and are primarily located in mammalian paraspeckles: liquid phase-separated, ribonucleoprotein sub-nuclear bodies templated by NEAT1 long non-coding RNA. A combination of structured and low-complexity regions provide polyvalent interaction interfaces that facilitate homo- and heterodimerisation, polymerisation, interactions with oligonucleotides, mRNA, long non-coding RNA, and liquid phase-separation, all of which have been implicated in cellular homeostasis and neurological diseases including neuroblastoma.
View Article and Find Full Text PDFChemistry
December 2024
School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
Cage-catenanes are chemical constructs where two or more cage-like molecules or assemblies are mechanically interlocked together. We report a new class of cage-catenanes where dimeric metal-organic cage-catenanes are linked into larger assemblies through additional bridging metal chloride links. These crystalline materials are obtained from the reaction of tris(nicotinoyl)cyclotriguaiacylene (L1) with Cu(II) salts, and all feature a tetramer of cages where two {Cu(L1)(X)} cages (X=anion) are mechanically interlocked, and link to each other and to another {Cu(L1)(X)} cage-catenane through a planar, linear tetranuclear {Cu(μ-Cl)Cl} cluster.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India.
CapG, an enzyme expressed by , catalyzes an epimerization reaction to synthesize -acetyl-L-fucosamine, a constituent of capsule involved in pathogenesis. This protein has two domains, exists as the homohexamers in the solution, and usually produces products at hundred-nanomolar concentrations. To determine the folding-unfolding mechanism and the oligomeric form of CapG, particularly at low concentrations, we have investigated a recombinant CapG (rCapG) using different probes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!