The mechanism of interaction of Zn porphyrin (ZnPP) with TiO2 surfaces is investigated with a view to optimizing the synthesis of hybrid nanomaterials. The strategy consists of studying the adsorption of ZnPP on TiO2 flat surfaces by taking advantage of complementary surface characterization techniques. Combining a detailed X-ray photoelectron spectroscopic analysis with AFM imaging allows ZnPP-surface and ZnPP intermolecular interactions to be discriminated. Probing the adsorption of ZnPP on TiO2 nanoparticles (NPs) reveals the dominant role of ZnPP-mediated interactions, which are associated with the formation of ZnPP multilayers and/or with the state of aggregation of NPs. These preliminary investigations provide a guideline to synthesizing a novel ZnPP-TiO2 hybrid nanomaterial in a one-step protocol. In this material, ZnPP molecules are presumably involved in the TiO2 lattice rather than on the NP surface. Furthermore, ZnPP molecules preserve their electronic properties within the TiO2 NPs, and this makes the ZnPP-TiO2 hybrid nanomaterial an excellent candidate for nanomedicine and related applications, such as localization of nanoparticles in cells and tissues or in photodynamic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201300193DOI Listing

Publication Analysis

Top Keywords

znpp tio2
12
tio2 nanoparticles
8
synthesis hybrid
8
hybrid nanomaterials
8
adsorption znpp
8
znpp-tio2 hybrid
8
hybrid nanomaterial
8
znpp molecules
8
znpp
7
tio2
6

Similar Publications

The mechanism of interaction of Zn porphyrin (ZnPP) with TiO2 surfaces is investigated with a view to optimizing the synthesis of hybrid nanomaterials. The strategy consists of studying the adsorption of ZnPP on TiO2 flat surfaces by taking advantage of complementary surface characterization techniques. Combining a detailed X-ray photoelectron spectroscopic analysis with AFM imaging allows ZnPP-surface and ZnPP intermolecular interactions to be discriminated.

View Article and Find Full Text PDF

Patterned mixed monolayers of porphyrins on nanocrystalline TiO(2) films were fabricated by substrate-catalyzed monolayer photolithography. Tin(IV) protoporphyrin IX (SnPP), zinc(II) protoporphyrin IX (ZnPP), and iron(III) meso-tetra(4-carboxyphenyl)porphine (FeTCP) were adsorbed to TiO(2) through the carboxyl groups, yielding saturation surface amounts per projected area of approximately 10(-7) mol/cm(2). Illumination of SnPP- and ZnPP-functionalized TiO(2) films with 355 nm light caused the desorption of the porphyrins, most likely through oxidative decarboxylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!