Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
X-ray diffraction shows the structure of a synthetic protein model, formed from noncovalent self-association of a 12-residue peptide and of sulfate ions at low pH. This peptide is a fragment of a 16-residue polypeptide that was designed to form an amphiphilic alpha helix with a ridge of Leu residues along one helical face. By interdigitation of the leucines of four such helices, the design called for self-association into a four-alpha-helical bundle. The crystal structure (2.7 angstrom resolution; R factor = 0.215) reveals a structure more complex than the design, with both a tetramer and a hexamer. The alpha-helical tetramer with leucine interior has more oblique crossing angles than most four-alpha-helical bundles; the hexamer has a globular hydrophobic core of 12 leucine residues and three associated sulfate ions. Computational analysis suggests that the hexameric association is tighter than the tetrameric one. The consistency of the structure with the design is discussed, as well as the divergence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.2382133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!