D-galactose is an attractive substrate for bioconversion. Herein, Escherichia coli was metabolically engineered to convert D-galactose into D-galactonate, a valuable compound in the polymer and cosmetic industries. D-galactonate productions by engineered E. coli strains were observed in shake flask cultivations containing 2 g L(-1) D-galactose. Engineered E. coli expressing gld coding for galactose dehydrogenase from Pseudomonas syringae was able to produce 0.17 g L(-1) D-galactonate. Inherent metabolic pathways for assimilating both D-galactose and D-galactonate were blocked to enhance the production of D-galactonate. This approach finally led to a 7.3-fold increase with D-galactonate concentration of 1.24 g L(-1) and yield of 62.0 %. Batch fermentation in 20 g L(-1) D-galactose of E. coli ∆galK∆dgoK mutant expressing the gld resulted in 17.6 g L(-1) of D-galactonate accumulation and highest yield of 88.1 %. Metabolic engineering strategy developed in this study could be useful for industrial production of D-galactonate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-013-1003-6 | DOI Listing |
Nucleic Acids Res
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India.
GntR/FadR family featuring an N-terminal winged helix-turn-helix DNA-binding domain and a C-terminal α-helical effector-binding and oligomerization domain constitutes one of the largest families of transcriptional regulators. Several GntR/FadR regulators govern the metabolism of sugar acids, carbon sources implicated in bacterial-host interactions. Although effectors are known for a few sugar acid regulators, the unavailability of relevant structures has left their allosteric mechanism unexplored.
View Article and Find Full Text PDFEMBO J
December 2024
Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, 52425, Jülich, Germany.
The solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and liver. We combined classical molecular dynamics simulations, Markov state modeling and hybrid first principles quantum mechanical/classical mechanical (QM/MM) simulations with experimental approaches to describe the transport mechanisms of a model bacterial protein, the D-galactonate transporter DgoT, at atomic resolution. We found that protonation of D46 and E133 precedes galactonate binding and that substrate binding induces closure of the extracellular gate, with the conserved R47 coupling substrate binding to transmembrane helix movement.
View Article and Find Full Text PDFCurr Opin Microbiol
October 2024
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India. Electronic address:
D-galactonate, a widely prevalent sugar acid, was first reported as a nutrient source for enteric bacteria in the 1970s. Since then, decades of research enabled a description of the modified Entner-Doudoroff pathway involved in its degradation and reported the structural and biochemical features of its metabolic enzymes, primarily in Escherichia coli K-12. However, only in the last few years, the D-galactonate transporter has been characterized, and the regulation of the dgo operon, encoding the structural genes for the transporter and enzymes of D-galactonate metabolism, has been detailed.
View Article and Find Full Text PDFJ Biol Chem
May 2023
Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, California. Electronic address:
The solute carrier 17 family transports diverse organic anions using two distinct modes of coupling to a source of energy. Transporters that package glutamate and nucleotide into secretory vesicles for regulated release by exocytosis are driven by membrane potential but subject to allosteric regulation by H and Cl. Other solute carrier 17 members including the lysosomal sialic acid exporter couple the flux of organic anion to cotransport of H.
View Article and Find Full Text PDFACS Catal
September 2022
Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K.
A 2-keto-3-deoxygluconate aldolase from the hyperthermophile catalyzes the nonstereoselective aldol reaction of pyruvate and d-glyceraldehyde to produce 2-keto-3-deoxygluconate (d-KDGlc) and 2-keto-3-deoxy-d-galactonate (d-KDGal). Previous investigations into curing the stereochemical promiscuity of this hyperstable aldolase used high-resolution structures of the aldolase bound to d-KDGlc or d-KDGal to identify critical amino acids involved in substrate binding for mutation. This structure-guided approach enabled mutant variants to be created that could stereoselectively catalyze the aldol reaction of pyruvate and natural d-glyceraldehyde to selectively afford d-KDGlc or d-KDGal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!