In many bacteria, secretins from the type II secretion system (T2SS) function as outer membrane gated channels that enable passage of folded proteins from the periplasm into the extracellular milieu. Cryo-electron microscopy of the T2SS secretin GspD revealed previously the dodecameric cylindrical architecture of secretins, and crystal structures of periplasmic secretin domains showed a modular domain organization. However, no high-resolution experimental data has as yet been provided about how the entire T2SS secretin or its domains are organized in a cylindrical fashion. Here we present a crystal structure of the N0 domain of the T2SS secretin GspD from enterotoxigenic Escherichia coli containing a helix with 12 subunits per turn. The helix has an outer diameter of ∼125Å and a pitch of only 24Å which suggests a model of a cylindrical dodecameric N0 ring whose dimensions correspond with the cryo-electron microscopy map of Vibrio cholerae GspD. The N0 domain is known to interact with the HR domain of the inner membrane T2SS protein GspC. When the new N0 ring model is combined with the known N0·HR crystal structure, a dodecameric double-ring of twelve N0-HR heterodimers is obtained. In contrast, the previously observed compact N0-N1 GspD module is not compatible with the N0 ring. Interestingly, a N0-N1 T3SS homolog is compatible with forming a N0-N1 dodecameric ring, due to a different N0-vs-N1 orientation. This suggests that the dodecameric N0 ring is an important feature of T2SS secretins with periplasmic domains undergoing considerable motions during exoprotein translocation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769495 | PMC |
http://dx.doi.org/10.1016/j.jsb.2013.06.013 | DOI Listing |
J Biol Chem
February 2024
Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland; Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy; R&D Department, ReGenFix Laboratories, Sardara, Italy. Electronic address:
The extremophile bacterium D. radiodurans boasts a distinctive cell envelope characterized by the regular arrangement of three protein complexes. Among these, the Type II Secretion System (T2SS) stands out as a pivotal structural component.
View Article and Find Full Text PDFSci Adv
October 2023
LCB-UMR7283, CNRS, Aix Marseille Université, IMM, Marseille, France.
Secretins are outer membrane (OM) channels found in various bacterial nanomachines that secrete or assemble large extracellular structures. High-resolution 3D structures of type 2 secretion system (T2SS) secretins revealed bimodular channels with a C-module, holding a conserved central gate and an optional top gate, followed by an N-module for which multiple structural organizations have been proposed. Here, we perform a structure-driven in vivo study of the XcpD secretin, which validates one of the organizations of the N-module whose flexibility enables alternative conformations.
View Article and Find Full Text PDFNat Commun
July 2023
Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
The GspD secretin is the outer membrane channel of the bacterial type II secretion system (T2SS) which secrets diverse toxins that cause severe diseases such as diarrhea and cholera. GspD needs to translocate from the inner to the outer membrane to exert its function, and this process is an essential step for T2SS to assemble. Here, we investigate two types of secretins discovered so far in Escherichia coli, GspD, and GspD.
View Article and Find Full Text PDFmBio
June 2022
Université Lyon, Université Lyon 1, INSA Lyon, CNRS UMR 5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!