We previously determined that AKR/J mice housed in a low-dose-rate (LDR) ((137)Cs, 0.7 mGy/h, 2.1 Gy) γ-irradiation facility developed less spontaneous thymic lymphoma and survived longer than those receiving sham or high-dose-rate (HDR) ((137)Cs, 0.8 Gy/min, 4.5 Gy) radiation. Interestingly, histopathological analysis showed a mild lymphomagenesis in the thymus of LDR-irradiated mice. Therefore, in this study, we investigated whether LDR irradiation could trigger the expression of thymic genes involved in the DNA repair process of AKR/J mice. The enrichment analysis of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways showed immune response, nucleosome organization, and the peroxisome proliferator-activated receptors signaling pathway in LDR-irradiated mice. Our microarray analysis and quantitative polymerase chain reaction data demonstrated that mRNA levels of Lig4 and RRM2 were specifically elevated in AKR/J mice at 130 days after the start of LDR irradiation. Furthermore, transcriptional levels of H2AX and ATM, proteins known to recruit DNA repair factors, were also shown to be upregulated. These data suggest that LDR irradiation could trigger specific induction of DNA repair-associated genes in an attempt to repair damaged DNA during tumor progression, which in turn contributed to the decreased incidence of lymphoma and increased survival. Overall, we identified specific DNA repair genes in LDR-irradiated AKR/J mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788152 | PMC |
http://dx.doi.org/10.4142/jvs.2013.14.3.271 | DOI Listing |
Genes (Basel)
May 2024
Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
The objective of this study was to investigate gene regulation of the developing fetal brain from congenic or inbred mice strains that differed in longevity. Gene expression and alternative splice variants were analyzed in a genome-wide manner in the fetal brain of C57BL/6J mice (long-lived) in comparison to B6.Cg-/J (congenic, short-lived) and AKR/J (inbred, short-lived) mice on day(d) 12, 15, and 17 of gestation.
View Article and Find Full Text PDFBone
July 2024
Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Germany. Electronic address:
Purpose: Bone is susceptible to fluctuations in iron homeostasis, as both iron deficiency and overload are linked to poor bone strength in humans. In mice, however, inconsistent results have been reported, likely due to different diet setups or genetic backgrounds. Here, we assessed the effect of different high and low iron diets on bone in six inbred mouse strains (C57BL/6J, A/J, BALB/cJ, AKR/J, C3H/HeJ, and DBA/2J).
View Article and Find Full Text PDFNutrients
November 2023
Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA.
Parasite Immunol
August 2023
Department of Immunology, University of Washington, Seattle, Washington, USA.
Intestinal helminth infection promotes a Type 2 inflammatory response in resistant C57BL/6 mice that is essential for worm clearance. The study of inbred mouse strains has revealed factors that are critical for parasite resistance and delineated the role of Type 1 versus Type 2 immune responses in worm clearance. In C57BL/6 mice, basophils are key innate immune cells that promote Type 2 inflammation and are programmed via the Notch signalling pathway during infection with the helminth Trichuris muris.
View Article and Find Full Text PDFJ Cardiol
April 2023
Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
Background: Group 2 pulmonary hypertension (PH) represents PH caused by left heart disease (PH-LHD). LHD induces left-sided filling and PH, finally leading to pulmonary vascular remodeling. Tofogliflozin (TOFO) is a sodium-glucose cotransporter 2 (SGLT2) inhibitor used in the treatment of diabetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!