Background Context: It is well known that spinal biomechanics and familial predisposition play an important role in the onset and evolution of idiopathic scoliosis. The relationship between the sagittal profile of the spine and spinal biomechanics has also been established in a number of studies. It has been suggested previously that a certain sagittal spinal configuration with implications for spinal rotational stiffness is inherited, thus providing a possible explanation for the well-known hereditary component in adolescent idiopathic scoliosis (AIS).
Purpose: To test the hypothesis that the familial trend in AIS may be partially explained by the inheritance of a sagittal spinal profile, which has been shown to make the spine less resistant to rotatory decompensation.
Study Design: A prospective case controlled radiographic analysis of the sagittal profile of the spine and spinopelvic alignment.
Patient Sample: One hundred two parents of scoliotic children, compared with 102 age-matched controls (parents of nonscoliotic children).
Outcome Measures: Physiologic measures: sagittal profile of the spine and spinopelvic alignment.
Methods: Freestanding lateral radiographs of 51 parent couples of girls with severe (Cobb angle >30°) progressive AIS (AIS group) and 102 age-matched controls (control group) were taken. Parents with manifest spinal deformities or spinal pathology of any kind were excluded based on history or spinal X-ray to avoid distorted sagittal images with unreliable measurements. Values were calculated for thoracic kyphosis (T4-T12), lumbar lordosis (L1-L5), spinal balance (sagittal plumb line of C7 and T4, T1-L5 sagittal spinal inclination, T9 sagittal offset), curvature parameters (expressed in the area under the curve [AUC]), and pelvic parameters (pelvic tilt, pelvic incidence, and sacral slope). In addition, the height, offset, and length of the posteriorly inclined spinal segment, inclination of each vertebra, and normalized sagittal spinal profile were calculated. Differences in spinopelvic alignment between fathers and mothers of both groups were analyzed.
Results: In the fathers of the AIS group, the plumb line of T4 was significantly less posteriorly positioned relative to the hip axis (79 mm vs. 92 mm; p=.009); the overall AUC and the lumbar AUC were significantly smaller (p=.002 and p=.008, respectively) as compared with the fathers in the control group. Vertebrae T11-L2 were significantly less backwardly inclined in the fathers of the AIS group (T11, L2: p<.05 and T12-L1: p<.01). An analysis of sagittal spinal profile showed a significantly flatter spine in the fathers of the AIS group (p=.01). No significant differences were observed in height, offset, and length of the backwardly inclined spinal segment. In the mothers of the AIS group, no statistically significant differences were observed in the spinopelvic parameters, spinal curvature, inclination of the vertebrae, and declive spinal segment parameters or sagittal spinal profile as compared with the mothers in the control group.
Conclusions: The sagittal spinal profile of the fathers of scoliotic children was significantly flatter than the sagittal spinal profile of fathers of nonscoliotic children. No difference was found in the sagittal spinal profile of the mothers of scoliotic children as compared with mothers of nonscoliotic children. Although it is well known that scoliotic mothers have an increased risk of having a scoliotic offspring, this study indicates that fathers may possibly contribute as well through their sagittal spinal profile to the inheritance of idiopathic scoliosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.spinee.2013.05.030 | DOI Listing |
World Neurosurg
December 2024
Spine Unit, Department of Orthopedic Surgery, Rigshospitalet, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100 Copenhagen, Denmark.
Study Design: Retrospective cohort study OBJECTIVES: The purpose of this study was to compare the 2-year radiological outcome and revision rates in patients with ASD treated with either PSO or PLIF, when PLIF was used to improve sagittal balance.
Methods: In 2016, PLIF was introduced at our institution as an alternative method when restoring lumbar lordosis. We analyzed two cohorts of patients with ASD undergoing either: PSO in 2010-2015 or PLIF in 2016-2020, retrospectively.
J Neurosurg Spine
December 2024
1Department of Orthopaedic Surgery, The Och Spine Hospital/Columbia University Irving Medical Center, New York, New York.
Objective: The objective of this study was to compare a multiple pelvic screw fixation strategy (dual bilateral 4 pelvic screw fixation [4PvS]) with the use of single bilateral 2 pelvic screw fixation (2PvS), with the aim of addressing lumbosacral junction stability.
Methods: This analysis is a single-center, retrospective review of ASD patients treated between 2015 and 2021. All patients had a minimum 2-year follow-up and spinal fusion to the sacrum without sacroiliac fusion and met at least one radiographic and procedural criterion: pelvic incidence-lumbar lordosis ≥ 20°, T1 pelvic angle ≥ 20°, sagittal vertical axis ≥ 7.
J Funct Morphol Kinesiol
December 2024
Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Sciences and Technologies, 75013 Paris, France.
The handstand is an exercise performed in many sports, either for its own sake or as part of physical training. Unlike the upright bipedal standing posture, little is known about the sagittal alignment and balance of the spine during a handstand, which may hinder coaching and reduce the benefits of this exercise if not performed correctly. The purpose of this study was to quantify the sagittal alignment and balance of the spine during a handstand using radiographic images to characterize the strategies employed by the spino-pelvic complex during this posture.
View Article and Find Full Text PDFAnn Ital Chir
December 2024
Department of Painology, The First People's Hospital of Tongxiang City, 314500 Tongxiang, Zhejiang, China.
J Med Case Rep
December 2024
"Carol Davila" University of Medicine and Pharmacology, Bucharest, Romania.
Background: Congenital scoliosis with progressive potential is a controversial subject in early-onset spinal deformities. The presence of a hemivertebra may produce severe spinal deformities. The evolution of a scoliotic curve in these cases is unpredictable and requires careful follow-up dependent on multiple variables, such as the location of the hemivertebra, the age of the patient at the time of diagnosis, and the degree of deformity already present in both sagittal and frontal planes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!