Clean air is considered to be a basic requirement of human health and well-being. An increasing range of adverse health effects has been linked to air pollution, at ever-lower concentrations. This research shows the newly developed Structural and Chemical Analyzer (SCA) to be a successful combination of Raman spectroscopy and scanning electron microscope-energy dispersive X-rays that opens up new insight into the composition of particulate matter (PM). The results obtained with soil and lichen samples demonstrate the capability of the technique to obtain elemental and molecular information of every single atmospheric PM focused at the micrometer and submicrometer levels. The SCA approach permitted the individual PM analysis, allowing the identification of the molecular (most commonly as sulphides, sulphates, carbonates, or oxides) form in which several hazardous metals (Zn, Pb, Cu, etc.) are evolved into potentially inhalable PM. During the present research, the synchronization of both techniques at a time revealed the morphological, elemental, and molecular forms of metal-rich PM, avoiding some analysis precautions and making the sample preparation and measurement steps more dynamic. In addition, the thermodynamic simulations carried out with the information obtained were helpful to differentiate whether the PM may be retained in the alveoli (i.e., galena) or if it may be dissolved and pass into the bloodstream (i.e., plattnerite).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac400878y | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
Chirality epitomizes the sophistication of chemistry, representing some of its most remarkable achievements. Yet, the precise synthesis of chiral structures from achiral building blocks remains a profound and enduring challenge in synthetic chemistry and materials science. Here, we demonstrate that achiral colloidal nanocrystals, including Au and Ag nanocrystals, can assemble into long-range-ordered helical assemblies with the assistance of chiral molecules.
View Article and Find Full Text PDFPharm Dev Technol
January 2025
Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Tokyo, Hachioji 192-0015, Japan.
The two-dimensional interlayer space of layered materials has been highlighted due to their adsorption property, whose nanostructure in the water-immersed state is scarcely understood by experiment. Recent developments in molecular simulation have enabled researchers to investigate the interlayer structure, but water content is necessary for accurate modeling. In the present study, we proposed a theoretical method to estimate the saturated water content and adsorption selectivity of trichlorophenol and phenol in montmorillonite modified with hexadecyltrimethylammonium ions.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States.
Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
Lattice thermal conductivity ( ) is of great importance in basic sciences and in energy conversion applications. However, low- crystalline materials have only been obtained from heavy elements, which typically exhibit poor stability and possible toxicity. Thus, low- materials composed of light elements should be explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!