Standard ocular tumor treatment includes brachytherapy, as well as proton therapy, particularly for large melanoma tumors. However, the effects of different radiation types on the metastatic spread is not clear. We aimed at comparing ruthenium ((106)Ru, emitting β electrons) and iodine ((125)I, γ-radiation) brachytherapy and proton beam therapy of melanoma implanted into the hamster eye on development of spontaneous lung metastases. Tumors of Bomirski Hamster Melanoma (BHM) implanted into the anterior chamber of the hamster eye grew aggressively and completely filled the anterior chamber within 8-10 days. Metastases, mainly in the lung, were found in 100% of untreated animals 30 days after enucleation. Tumors were irradiated at a dose of 3-10 Gy with a (106)Ru plaque and at a dose of 6-14 Gy using a (125)I plaque. The protons were accelerated using the AIC-144 isochronous cyclotron operating at 60 MeV. BHM tumors located in the anterior chamber of the eye were irradiated with 10 Gy, for the depth of 3.88 mm. All radiation types caused inhibition of tumor growth by about 10 days. An increase in the number of metastases was observed for 3 Gy of β-irradiation, whereas at 10 Gy an inhibition of metastasis was found. γ-radiation reduced the metastatic mass at all applied doses, and proton beam therapy at 10 Gy also inhibited the metastastic spread. These results are discussed in the context of recent clinical and molecular data on radiation effects on metastasis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

proton beam
12
hamster eye
12
anterior chamber
12
radiation types
8
beam therapy
8
metastasis inhibition
4
proton
4
inhibition proton
4
beam β-
4
β- γ-irradiation
4

Similar Publications

Determination of the degree of sulfonation in cross-linked and non-cross-linked Poly(ether ether ketone) using different analytical techniques.

Heliyon

January 2025

Division of Polymer Chemistry, Department of Chemistry, Atomic Energy Commission, P.O. Box: 6091, Damascus, Syrian Arab Republic.

The degree of sulfonation (DS) is a key property of sulfonated polymers, as it significantly influences their swelling behaviour, conductivity and mechanical properties. Accurately determining the DS is essential for optimizing these materials for various applications. In this work, the DS of sulfonated poly (ether ether ketone) (SPEEK) was evaluated using a combination of analytical techniques, including titration, back titration, Fourier Transform Infrared (FTIR), Ultra-Violet (UV) and proton nuclear magnetic resonance (H NMR) spectroscopies, Thermogravimetric analysis (TGA), Rutherford backscattering (RBS) and particle induced X-ray emission (PIXE) analysis.

View Article and Find Full Text PDF

Background: Radiotherapy as a complement or an alternative to neurosurgery has a central role in the treatment of skull base grade I-II meningiomas. Radiotherapy techniques have improved considerably over the last two decades, becoming more effective and sparing more and more the healthy tissue surrounding the tumour. Currently, hypo-fractionated stereotactic radiotherapy (SRT) for small tumours and normo-fractionated intensity-modulated radiotherapy (IMRT) or proton-therapy (PT) for larger tumours are the most widely used techniques.

View Article and Find Full Text PDF

Background And Purpose: The normal tissue sparing afforded by FLASH radiotherapy is being intensely investigated for potential clinical translation. Here, we studied the effects of FLASH proton radiotherapy (F-PRT) in the reirradiation setting, with or without hypofractionation. Chronic toxicities in three murine models of normal tissue toxicity including the intestine, skin, and bone were investigated.

View Article and Find Full Text PDF

Laser Wakefield Acceleration of Ions with a Transverse Flying Focus.

Phys Rev Lett

December 2024

Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.

The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100  MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.

View Article and Find Full Text PDF

This paper reports the proton response function for solution-grown trans-stilbene scintillator from 1 to 25 MeVee and its application for unfolding neutron spectra of Cf-252 and AmBe sources. Low energy proton response was measured by the Time-of-Flight technique at the Korea Research Institute of Standards and Science. In contrast, high energy response was investigated using a 45 MeV proton beam at the Korea Institute of Radiological & Medical Sciences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!