Genetic recombination contributes to the diversity of human immunodeficiency virus (HIV-1). Productive HIV-1 recombination is, however, dependent on both the number of HIV-1 genomes per infected cell and the genetic relationship between these viral genomes. A detailed analysis of the number of proviruses and their genetic relationship in infected cells isolated from peripheral blood and tissue compartments is therefore important for understanding HIV-1 recombination, genetic diversity and the dynamics of HIV-1 infection. To address these issues, we used a previously developed single-cell sequencing technique to quantify and genetically characterize individual HIV-1 DNA molecules from single cells in lymph node tissue and peripheral blood. Analysis of memory and naïve CD4(+) T cells from paired lymph node and peripheral blood samples from five untreated chronically infected patients revealed that the majority of these HIV-1-infected cells (>90%) contain only one copy of HIV-1 DNA, implying a limited potential for productive recombination in virus produced by these cells in these two compartments. Phylogenetic analysis revealed genetic similarity of HIV-1 DNA in memory and naïve CD4(+) T-cells from lymph node, peripheral blood and HIV-1 RNA from plasma, implying exchange of virus and/or infected cells between these compartments in untreated chronic infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688524PMC
http://dx.doi.org/10.1371/journal.ppat.1003432DOI Listing

Publication Analysis

Top Keywords

lymph node
16
hiv-1 dna
16
peripheral blood
16
hiv-1
11
node tissue
8
infected patients
8
cd4+ t-cells
8
hiv-1 recombination
8
genetic relationship
8
infected cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!