Symptoms of the metabolic syndrome (MetS), such as insulin resistance, obesity, and hypertension, have been associated with sympathetic hyperactivity. In addition, the adiponectin pathway has interesting therapeutic potentials in MetS. Our purpose was to investigate how targeting both the sympathetic nervous system and the adipose tissue (adiponectin secretion) with a drug selective for nonadrenergic I1-imidazoline receptors (I1Rs) may represent a new concept in MetS pharmacotherapy. LNP599 [3-chloro-2-methyl-phenyl)-(4-methyl-4,5-dihydro-3H-pyrrol-2-yl)-amine hydrochloride], a new pyrroline derivative, displaced the specific [(125)I]para-iodoclonidine binding to I1R with nanomolar affinity and had no significant affinity for a large set of receptors, transporters, and enzymes. In addition, it can cross the blood-brain barrier and has good intestinal absorption, permitting oral as well as intravenous delivery. The presence of I1Rs was demonstrated in 3T3-L1 adipocytes; LNP599 had a specific stimulatory action on adiponectin secretion in adipocytes. Short-term administration of LNP599 (10 mg/kg i.v.) in anesthetized Sprague-Dawley rats markedly decreased sympathetic activity, causing hypotension and bradycardia. Long-term treatment of spontaneously hypertensive heart failure rats with LNP599 (20 mg/kg PO) had favorable effects on blood pressure, body weight, insulin resistance, glucose tolerance, and lipid profile, and it increased plasma adiponectin. The pyrroline derivative, which inhibits sympathetic activity and stimulates adiponectin secretion, has beneficial effects on all the MetS abnormalities. The use of one single drug with both actions may constitute an innovative strategy for the management of MetS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.113.205328 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!