In 1957, a unique pattern of hydrogen bonding between N3 and O4 on uracil and N7 and N6 on adenine was proposed to explain how poly(rU) strands can associate with poly(rA)-poly(rU) duplexes to form triplexes. Two years later, Karst Hoogsteen visualized such a noncanonical A-T base-pair through X-ray analysis of co-crystals containing 9-methyladenine and 1-methylthymine. Subsequent X-ray analyses of guanine and cytosine derivatives yielded the expected Watson-Crick base-pairing, but those of adenine and thymine (or uridine) did not yield Watson-Crick base-pairs, instead favoring "Hoogsteen" base-pairing. More than two decades ensued without experimental "proof" for A-T Watson-Crick base-pairs, while Hoogsteen base-pairs continued to surface in AT-rich sequences, closing base-pairs of apical loops, in structures of DNA bound to antibiotics and proteins, damaged and chemically modified DNA, and in polymerases that replicate DNA via Hoogsteen pairing. Recently, NMR studies have shown that base-pairs in duplex DNA exist as a dynamic equilibrium between Watson-Crick and Hoogsteen forms. There is now little doubt that Hoogsteen base-pairs exist in significant abundance in genomic DNA, where they can expand the structural and functional versatility of duplex DNA beyond that which can be achieved based only on Watson-Crick base-pairing. Here, we provide a historical account of the discovery and characterization of Hoogsteen base-pairs, hoping that this will inform future studies exploring the occurrence and functional importance of these alternative base-pairs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3844552 | PMC |
http://dx.doi.org/10.1002/bip.22334 | DOI Listing |
In duplex DNA, A-T and G-C form Watson-Crick base pairs, and Hoogsteen pairing only dominates upon protein binding or DNA damage. Using NMR, we show that an A-T Hoogsteen base pair previously observed in crystal structures of transposon DNA hairpins bound to TnpA protein forms in solution even in the absence of TnpA. This Hoogsteen base pair, located adjacent to a dinucleotide apical loop, exists in dynamic equilibrium with a minor Watson-Crick conformation (population ∼11% and lifetime ∼55 µs).
View Article and Find Full Text PDFACS Chem Biol
December 2024
Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States.
Noncanonical base pairs play an important role in enabling the structural and functional complexity of RNA. Molecular recognition of such motifs is challenging because of their diversity, significant deviation from the Watson-Crick structures, and dynamic behavior, resulting in alternative conformations of similar stability. Triplex-forming peptide nucleic acids (PNAs) have emerged as excellent ligands for the recognition of Watson-Crick base-paired double helical RNA.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
Department of Chemistry, New Mexico Highlands University, Las Vegas, NM 87701, USA.
Non-canonical nucleobase pairs differ from canonical Watson-Crick (WC) pairs in their hydrogen bonding patterns. This study uses density functional theory with empirical dispersion correction to examine the stability and electronic properties of free adenine dimers stabilized by hydrogen bonds along the WC, Sugar (S), and Hoogsteen (H) edges. Dispersion correction is crucial for accurate interaction energy evaluation.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2024
Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
Locating plausible transition paths and enhanced sampling of rare events are fundamental to understanding the functional dynamics of biomolecules. Here, a constraint-based constant advance replicas (CAR) formalism of reaction paths is reported for identifying the most probable transition path (MPTP) between two given states. We derive the temporal-integrated effective dynamics governing the projected subsystem under the holonomic CAR path constraints and show that a dynamical action functional can be defined and used for optimizing the MPTP.
View Article and Find Full Text PDFMolecules
October 2024
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland.
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!