Hybrid NS ligands supported Cu(I)/(II) complexes for azide-alkyne cycloaddition reactions.

Dalton Trans

Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore.

Published: August 2013

Three copper complexes of nitrogen-sulfur donor ligands, [CuBr₂(L1)] (1), [CuCl₂(L2)₂] (2) and [Cu₂I₂(L3)]n (3) (L1 = bis(2-cyclohexylsulfanylethyl)amine, L2 = 2-(benzylsulfanylmethyl)pyridine and L3 = 2-(4-pyridylsulfanylmethyl)pyridine), have been synthesized and characterized by single-crystal X-ray diffraction (XRD), powder XRD and TGA analysis. Complexes 1 and 2 are mononuclear Cu(II) complexes and are EPR active with distorted square-pyramidal and octahedral geometry, respectively. Complex 3 is a two-dimensional tetrahedral Cu(I) coordination polymer with 16- and 20-membered metallocycles. These complexes show good catalytic activities for one-pot azide-alkyne cycloaddition reactions in CH₃OH-H₂O.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt50247cDOI Listing

Publication Analysis

Top Keywords

azide-alkyne cycloaddition
8
cycloaddition reactions
8
complexes
5
hybrid ligands
4
ligands supported
4
supported cui/ii
4
cui/ii complexes
4
complexes azide-alkyne
4
reactions three
4
three copper
4

Similar Publications

Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.

View Article and Find Full Text PDF

A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement.

View Article and Find Full Text PDF

Small-molecule fluorophores are invaluable tools for fluorescence imaging. However, means for their covalent conjugation to the target proteins limit applications in multicolor imaging. Here, we identify 2-[(alkylhio)(ryl)ethylene]alononitrile (TAMM) molecules reacting with 1,2-aminothiol at a labeling rate over 10 M s through detailed mechanistic investigation.

View Article and Find Full Text PDF

Rapid Crystallization and Versatile Metalation of Acetylhydrazone-Linked Covalent Organic Frameworks for Heterogenous Catalysis.

J Am Chem Soc

January 2025

School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.

Covalent organic frameworks (COFs) hold promise in heterogeneous metal catalysis benefiting from their robust, crystalline, and porous structures. However, synthetic challenges persist in prolonged crystallization times, limited metal loading, and uncertain coordination environments. Here, we present the rapid crystallization and versatile metalation of new acetylhydrazone-linked COFs (AH-COFs) by condensation of ketone and hydrazide components, featuring full conversion within 30 min under open-air and mild conditions.

View Article and Find Full Text PDF

Metal-mediated Protein Engineering within live Cells.

Chem Asian J

December 2024

Humboldt-Universitat zu Berlin, Chemistry, Brook-Taylor Str 2, 12489, Berlin, GERMANY.

Metal mediated several organic reactions are known which can be used inside the cellular medium for protein modifications, eventually for targeting diseases. Indeed, due to ease of handling-rapid solubility-fast cell penetration metals are superior than any other competitor as a stimulus/mediator in organic reactions relevant with protein modifications. Metal mediated most effective reactions as a chemical biology tool are Cu(I)-catalyzed azide-alkyne cycloaddition(CuAAC)/click reactions or Pd mediated multiple chemical reactions for intra/extra cellular protein modifications etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!