A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A patient-derived xenograft mouse model generated from primary cultured cells recapitulates patient tumors phenotypically and genetically. | LitMetric

Background: Preclinical trials of cancer therapeutics require both in vitro and in vivo evaluations. Recently, a patient-derived xenograft model in immunodeficient mice has been reported as a valuable in vivo evaluation system. In our current study, we aimed to establish a more efficient and accurate system for preclinical trials by generating primary cancer cells from patients and performing xenograft transfers of these cells into mice.

Methods: Human lung cancer specimens (n = 4) obtained from chemo-naive patients were cultured in bronchiolar epithelial basal medium supplemented with growth factors, followed by inoculation into non-obese diabetic/severe combined immunodeficient mice. The generated tumors in the mice were validated phenotypically and genetically using the original specimen and primary cancer cells.

Results: Immunohistochemical analysis of marker proteins, including cytokeratin 7, cytokeratin 20, epidermal growth factor receptor, thyroid transcription factor-1, CD56, chromogranin, and synaptophysin, demonstrated that the xenograft tumors were originated from the patient tumors. Moreover, mutation profiling using the OncoMap System, which analyzes mutations at 440 sites in 41 tumor-related genes, showed the same patterns in both the patient and xenograft tumors.

Conclusions: These results indicate that our animal system is suitable for the amplification of patient tumors and will therefore be beneficial for both in vivo and in vitro assessments and preclinical trials of chemotherapeutics. This has the potential to provide a very effective tool for future personalized therapy and for conducting translational lung cancer research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00432-013-1449-6DOI Listing

Publication Analysis

Top Keywords

patient tumors
12
preclinical trials
12
patient-derived xenograft
8
phenotypically genetically
8
immunodeficient mice
8
primary cancer
8
lung cancer
8
tumors
5
cancer
5
xenograft mouse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!