Improvement of LATE-PCR to allow single-cell analysis by pyrosequencing.

Analyst

Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.

Published: September 2013

AI Article Synopsis

  • Nucleic acid analysis in single cells is crucial, but traditional methods lack the sensitivity needed due to the small amount of genetic material.
  • This paper presents a new assay that combines improved linear-after-the-exponential-PCR (imLATE-PCR) with sensitive pyrosequencing to successfully genotype single cells.
  • The method demonstrates high sensitivity by detecting specific mutations associated with genetic conditions, indicating its potential for applications like preimplantation genetic diagnosis (PGD).

Article Abstract

Nucleic acid analysis in a single cell is very important, but the extremely small amount of template in a single cell requires a detection method more sensitive than the conventional method. In this paper, we describe a novel assay allowing a single cell genotyping by coupling improved linear-after-the-exponential-PCR (imLATE-PCR) on a modified glass slide with highly sensitive pyrosequencing. Due to the significantly increased yield of ssDNA in imLATE-PCR amplicons, it is possible to employ pyrosequencing to sequence the products from 1 μL chip PCR which directly used a single cell as the starting material. As a proof-of-concept, the 1555A>G mutation (related to inherited deafness) on mitochondrial DNA and the SNP 2731C>T of the BRCA1 gene on genomic DNA from a single cell were successfully detected, indicating that our single-cell-pyrosequencing method has high sensitivity, simple operation and is low cost. The approach has promise to be of efficient usage in the fields of diagnosis of genetic disease from a single cell, for example, preimplantation genetic diagnosis (PGD).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3an00821eDOI Listing

Publication Analysis

Top Keywords

single cell
24
single
6
cell
6
improvement late-pcr
4
late-pcr allow
4
allow single-cell
4
single-cell analysis
4
analysis pyrosequencing
4
pyrosequencing nucleic
4
nucleic acid
4

Similar Publications

Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.

View Article and Find Full Text PDF

The proximity ligation-based Hi-C and derivative methods are the mainstream tools to study genome-wide chromatin interactions. These methods often fragment the genome using enzymes functionally irrelevant to the interactions per se, restraining the efficiency in identifying structural features and the underlying regulatory elements. Here we present Footprint-C, which yields high-resolution chromatin contact maps built upon intact and genuine footprints protected by transcription factor (TF) binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!