The potential of terahertz-time domain spectroscopy (THz-TDS) as a diagnostic tool for studies of inks in historical documents is investigated in this paper. Transmission mode THz-TDS was performed on historically informed model writing and drawing inks. Carbon black, bistre and sepia inks show featureless spectra between 5 and 75 cm(-1) (0.15-2.25 THz); however, their analysis still provided useful information on the interaction of terahertz radiation with amorphous materials. On the other hand, THz-TDS can be used to distinguish different iron gall inks with respect to the amount of iron(II) sulfate contained, as sharp spectral features are observed for inks containing different ratios of iron(II) sulfate to tannic or gallic acid. Additionally, copper sulfate was found to modify the structure of iron(II) precipitate. Furthermore, Principal Component Analysis (PCA) applied to THz-TDS spectra, highlights changes in iron gall inks during thermal degradation, during which a decrease in the sharp spectral bands associated with iron(II) sulfate is observed. ATR-FTIR spectroscopy combined with THz-TDS of dynamically heated ink samples indicate that this phenomenon is due to dehydration of iron(II) sulfate heptahydrate. While this research demonstrates the potential of THz-TDS to improve monitoring of the chemical state of historical documents, the outcomes go beyond the heritage field, as it also helps to develop the theoretical knowledge on interactions between terahertz radiation and matter, particularly in studies of long-range symmetry (polymorphism) in complex molecular structures and the role played by the surrounding matrix, and also indicates the potential of THz-TDS for the optimization of contrast in terahertz imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3an00331k | DOI Listing |
Environ Sci Technol
October 2024
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
Chromium (Cr) transformation in soils mediated by iron (Fe) (oxyhr)oxides, Fe(II), organic matter (OM), and microbes is largely unexplored. Here, their coupling processes and mechanisms were investigated during anoxic incubation experiments of four Cr(VI) spiked soil samples with distinct physicochemical properties from the tropical and subtropical regions of China. It demonstrates that easily oxidizable organic carbon (EOC, 55-84%) and microbes (16-48%) drive Cr(VI) reduction in soils enriched with goethite and/or hematite, among which in dryland soils microbial sulfate reduction may also be involved.
View Article and Find Full Text PDFRSC Adv
July 2024
Department of Chemistry "G. Ciamician", University of Bologna Italy
"Vitriol" is a term that appeared during the Middle-Ages to indicate a wide range of ingredients widely used both in medicinal and alchemical recipes. Green, blue, or white vitriols are easily associated with iron(ii), copper(ii), and zinc sulphate respectively thanks to the historical sources composed in the time period when the ancient and modern nomenclatures overlapped. However, other colours of vitriols are attested throughout history, such as yellow, red, or black.
View Article and Find Full Text PDFPolymers (Basel)
May 2024
Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia.
Arabinogalactan (AG), extracted from larch wood, is a β-1,3-galactan backbone and β-1,6-galactan side chains with attached α-1-arabinofuranosyl and β-1-arabinopyranosyl residues. Although the structural characteristics of arabinogalactan II type have already been studied, its functionalization using 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidation remains a promising avenue. In this study, the oxidation of AG, a neutral polysaccharide, was carried out using the TEMPO/NaBr/NaOCl system, resulting in polyuronides with improved functional properties.
View Article and Find Full Text PDFAnal Sci
September 2024
Estuary Research Center, Shimane University, Matsue, Shimane, 690-8504, Japan.
In this study, we developed a simple method that enables iron(III) in environmental water to be directly determined via spectrophotometry. In water samples, iron(III) formed a yellowish complex with N-1-Naphthylethylenediamine dihydrochloride (NEDA) at pH 2.0-2.
View Article and Find Full Text PDFSci Total Environ
June 2024
Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
Carbonaceous materials catalyze reductive dechlorination of chlorinated ethylenes (CEs) by iron(II) materials providing a new approach for the remediation of CE polluted groundwater. While most CEs are reduced via β-elimination, vinyl chloride (VC), the most toxic and recalcitrant CE, degrades by hydrogenolysis. The significance of carbon catalysts for reduction of VC is well documented for iron(0) systems, but hardly investigated with iron(II) materials as reductants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!