A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Smad2 and myocardin-related transcription factor B cooperatively regulate vascular smooth muscle differentiation from neural crest cells. | LitMetric

Rationale: Vascular smooth muscle cell (VSMC) differentiation from neural crest cells (NCCs) is critical for cardiovascular development, but the mechanisms remain largely unknown.

Objective: Transforming growth factor-β (TGF-β) function in VSMC differentiation from NCCs is controversial. Therefore, we determined the role and mechanism of a TGF-β downstream signaling intermediate Smad2 in NCC differentiation to VSMCs.

Methods And Results: By using Cre/loxP system, we generated a NCC tissue-specific Smad2 knockout mouse model and found that Smad2 deletion resulted in defective NCC differentiation to VSMCs in aortic arch arteries during embryonic development and caused vessel wall abnormality in adult carotid arteries where the VSMCs are derived from NCCs. The abnormalities included 1 layer of VSMCs missing in the media of the arteries with distorted and thinner elastic lamina, leading to a thinner vessel wall compared with wild-type vessel. Mechanistically, Smad2 interacted with myocardin-related transcription factor B (MRTFB) to regulate VSMC marker gene expression. Smad2 was required for TGF-β-induced MRTFB nuclear translocation, whereas MRTFB enhanced Smad2 binding to VSMC marker promoter. Furthermore, we found that Smad2, but not Smad3, was a progenitor-specific transcription factor mediating TGF-β-induced VSMC differentiation from NCCs. Smad2 also seemed to be involved in determining the physiological differences between NCC-derived and mesoderm-derived VSMCs.

Conclusions: Smad2 is an important factor in regulating progenitor-specific VSMC development and physiological differences between NCC-derived and mesoderm-derived VSMCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837448PMC
http://dx.doi.org/10.1161/CIRCRESAHA.113.301921DOI Listing

Publication Analysis

Top Keywords

transcription factor
12
vsmc differentiation
12
smad2
10
myocardin-related transcription
8
vascular smooth
8
smooth muscle
8
differentiation neural
8
neural crest
8
crest cells
8
differentiation nccs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!