Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

Philos Trans A Math Phys Eng Sci

Centre for Plastic Electronics and Department of Chemistry, Imperial College London, London SW7 2AZ, UK.

Published: August 2013

This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2012.0195DOI Listing

Publication Analysis

Top Keywords

solar energy
12
energy conversion
12
molecular-excited states
12
molecular-based solar
8
solar cell
8
cell technologies
8
technologies focus
8
solar
6
energy
6
molecular approaches
4

Similar Publications

The textile industry is one of the main industries that benefited from the industrial revolution. Therefore, discharging of dyes from textile, paper, plastic, and rubber industries is inevitable. This colored wastewater prevents sunlight penetration and highly affects water sources.

View Article and Find Full Text PDF

The design of electrically conductive textiles appears to be a promising approach to combat the existing challenge of deaths caused by severe cold climates around the globe. However, reports on the scalable fabrication of tolerant conductive textiles maintaining a low electrical resistance with an ability for unperturbed and prolonged performance are scarce. Here, a breathable and wrappable water-repellent conductive textile (water-repellent CT) with electrothermal and photothermal conversion abilities at low external voltage and in weak solar light is introduced, respectively.

View Article and Find Full Text PDF

Concentrated Solar-Driven Catalytic CO2 Reduction: From Fundamental Research to Practical Applications.

ChemSusChem

January 2025

Southeast University, School of Chemistry and Chemical Engineering, Dong nan da xue Road No.2, Jiangning District, Nanjing, China., 211189, Nanjing, CHINA.

Concentrated solar-driven CO2 reduction is a breakthrough approach to combat climate crisis. Harnessing the in-situ coupling of high photon flux density and high thermal energy flow initiates multiple energy conversion pathways, such as photothermal, photoelectric, and thermoelectric processes, thereby enhancing the efficient activation of CO2. This review systematically presents the fundamental principles of concentrated solar systems, the design and classification of solar-concentrating devices, and industrial application case studies.

View Article and Find Full Text PDF

A Fish-Gill-Inspired Biomimetic Multiscale-Ordered Hydrogel-Based Solar Water Evaporator for Highly Efficient Salt-Rejecting Seawater Desalination.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

Solar energy-driven steam generation is a renewable, energy-efficient technology that can alleviate the global clean water shortage through seawater desalination. However, the contradiction between resistance to salinity accretion and maintaining high water evaporation properties remains a challenging bottleneck. Herein, we have developed a biomimetic multiscale-ordered hydrogel-based solar water evaporator for efficient seawater desalination.

View Article and Find Full Text PDF

Template-Thermally Induced Phase Separation-Assisted Microporous Regulation in Poly(lactic acid) Aerogel for Sustainable Radiative Cooling.

Biomacromolecules

January 2025

National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.

Herein, an eco-friendly and degradable poly(lactic acid) aerogel was prepared by combining a poly(ethylene glycol) template material with thermally induced phase separation. Due to the tailored pore size introduced by the template material, the aerogel exhibits high solar reflectance (92.0%), excellent thermal emittance (90.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!