Substrate specificity and oligomerization of human GMP synthetase.

J Mol Biol

Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden.

Published: November 2013

Guanine monophosphate (GMP) synthetase is a bifunctional two-domain enzyme. The N-terminal glutaminase domain generates ammonia from glutamine and the C-terminal synthetase domain aminates xanthine monophosphate (XMP) to form GMP. Mammalian GMP synthetases (GMPSs) contain a 130-residue-long insert in the synthetase domain in comparison to bacterial proteins. We report here the structure of a eukaryotic GMPS. Substrate XMP was bound in the crystal structure of the human GMPS enzyme. XMP is bound to the synthetase domain and covered by a LID motif. The enzyme forms a dimer in the crystal structure with subunit orientations entirely different from the bacterial counterparts. The inserted sub-domain is shown to be involved in substrate binding and dimerization. Furthermore, the structural basis for XMP recognition is revealed as well as a potential allosteric site. Enzymes in the nucleotide metabolism typically display an increased activity in proliferating cells due to the increased need for nucleotides. Many drugs used as immunosuppressants and for treatment of cancer and viral diseases are indeed nucleobase- and nucleoside-based compounds, which are acting on or are activated by enzymes in this pathway. The information obtained from the crystal structure of human GMPS might therefore aid in understanding interactions of nucleoside-based drugs with GMPS and in structure-based design of GMPS-specific inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2013.06.032DOI Listing

Publication Analysis

Top Keywords

synthetase domain
12
crystal structure
12
gmp synthetase
8
xmp bound
8
structure human
8
human gmps
8
synthetase
5
substrate specificity
4
specificity oligomerization
4
oligomerization human
4

Similar Publications

NUMB alternative splicing and isoform specific functions in development and disease.

J Biol Chem

January 2025

The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9. Electronic address:

The NUMB gene encodes a conserved adaptor protein with roles in asymmetric cell division and cell fate determination. First described as an inhibitor of Notch signaling, multi-functional NUMB proteins regulate multiple cellular pathways through protein complexes with ubiquitin ligases, polarity proteins and the endocytic machinery. The vertebrate NUMB protein isoforms were identified over two decades ago, yet the majority of functional studies exploring NUMB function in endocytosis, cell migration and adhesion, development and disease have largely neglected the potential for distinct isoform activity in design and interpretation.

View Article and Find Full Text PDF

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Emerging Roles of TRIM56 in Antiviral Innate Immunity.

Viruses

January 2025

Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains.

View Article and Find Full Text PDF

Mutations of the von Hippel-Lindau () tumor suppressor gene occur frequently in clear cell renal cell carcinoma (RCC), the predominant histology of kidney cancer, and have been associated with its pathogenesis and progression. Alterations of lead to impaired degradation of hypoxia-inducible factor 1α (HIF1α) and HIF2α promoting neoangiogenesis, which is pivotal for cancer growth. As such, targeting the VHL-HIF axis holds relevant potential for therapeutic purposes.

View Article and Find Full Text PDF

Engineering the future of medicine: Natural products, synthetic biology and artificial intelligence for next-generation therapeutics.

Clin Transl Med

February 2025

Synthetic Biology of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), PharmaScienceHub (PSH), Saarbrücken, Germany.

The eXchange Unit between Thiolation domains approach and artificial intelligence (AI)-driven tools like Synthetic Intelligence are transforming nonribosomal peptide synthetase and polyketide synthase engineering, enabling the creation of novel bioactive compounds that address critical challenges like antibiotic resistance and cancer. These innovations expand chemical space and optimize biosynthetic pathways, offering precise and scalable therapeutic solutions. Collaboration across synthetic biology, AI, and clinical research is essential to translating these breakthroughs into next-generation treatments and revolutionizing drug discovery and patient care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!