The aim of the present study was to determine if insulin is able to modulate the pressor response to intracerebroventricularly administered angiotensin II in insulin resistant fructose overloaded rats. Male Sprague-Dawley rats were divided into two groups: 1) Control group (C) with tap water to drink for 6 weeks (n=36); and 2) fructose treated (F), with fructose solution (10% w/v) to drink for 6 weeks (n=36). On the day of the experiment, anesthetized male C and F rats were intracerebroventricularly infused with insulin (12 mU/h, n=15) or Ringer's solution as vehicle (n=15) for 2h. Immediately, changes in mean arterial pressure (MAP) in response to an intracerebroventricular subpressor dose of angiotensin II (5 pmol, n=10) or vehicle (n=5) were measured for 10 min. Then, hypothalami were removed and Akt and ERK1/2 phosphorylation levels were determined. In a subset of C (n=10) and F (n=20) animals, PD98059 (p44/42 MAPK inhibitor) or vehicle was administered intracerebroventricularly at a flow rate of 5 μl/min for 1 min. Ten minutes later, insulin (12 mU/h, n=5 for each group) or vehicle (Ringer's solution, only in the F group, n=5) was perfused for 2h at a flow rate of 4 μl/h, and cardiovascular parameters were measured every 15 min. Immediately, changes in MAP and HR in response to a subpressor dose of Ang II (5 pmol/2 μl) were evaluated for 10 min (n=5 for each group). In other subset of animals (n=6 for each group), AT1 and AT2 hypothalamic receptor levels were measured by Western blotting. Intracerebroventricular insulin pre-treatment increased the pressor response to angiotensin II in C rats. In F rats (with or without insulin pretreatment), the pressor response to angiotensin II was higher than that in vehicle pre-treated C animals, but similar to that observed in C after insulin infusion. In C rats phospho-ERK 1/2 hypothalamic levels significantly increased after angiotensin II injection in insulin pretreated animals compared to vehicle pre-treated rats, suggesting that MAPK activation might be involved in insulin potentiation of blood pressure response to angiotensin II in the brain. Phospho-ERK 1/2 hypothalamic levels were significantly increased in vehicle treated F rats compared to C, suggesting that basal MAPK activation might play a role in the enhanced response to angiotensin II observed in these animals. Finally, in F rats, either after vehicle or insulin infusion, angiotensin II injection was associated with a similar increase in phospho-ERK 1/2 hypothalamic levels, comparable to that observed after angiotensin II injection in insulin pre-treated C animals. ERK 1/2 blockade significantly reduced MAP in F rats compared to C. Moreover, ERK 1/2 inhibition completely abolished the Ang II pressor response in F rats and in insulin pre-treated C animals. All these findings suggest that insulin-angiotensin II interaction at hypothalamic level might be involved in the increase in blood pressure observed in the insulin resistant state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.regpep.2013.06.001 | DOI Listing |
Clin Auton Res
January 2025
Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA.
Purpose: Resting beat-to-beat blood pressure variability is a strong predictor of cardiovascular events and mortality. However, its underlying mechanisms remain incompletely understood. Given that the sympathetic nervous system plays a pivotal role in cardiovascular regulation, we hypothesized that alpha-1 adrenergic receptors (the main sympathetic receptor controlling peripheral vasoconstriction) may contribute to resting beat-to-beat blood pressure variability.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the Department of Radiology, Medical Physics (MML, TJC), Department of Interventional Radiology (NS, GAC), Department of Surgery and Large Animal Studies (MAN), and the Department of Statistics (MG), University of Chicago, Chicago, IL, USA; Department of Anesthesiology (SPR), University of Illinois, Chicago, IL, USA; Department of Radiology (MSS), University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Radiology, Biomedical Engineering and Imaging Institute (Current affiliation MML), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Carmel Health Systems (Current affiliation GAC), Columbus, OH, USA.
Background And Purpose: In acute ischemic stroke, the amount of "local" CBF distal to the occlusion, i.e. all blood flow within a region whether supplied antegrade or delayed and dispersed through the collateral network, may contain valuable information regarding infarct growth rate and treatment response.
View Article and Find Full Text PDFInt J Behav Med
January 2025
Department of Clinical Psychological Science, Maastricht University, Maastricht, The Netherlands.
Background: Previous studies demonstrated that task-specific stress appraisals as well as the more general belief that stress is (mal)adaptive (i.e., stress mindset) can affect the stress response.
View Article and Find Full Text PDFAnxiety Stress Coping
January 2025
Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Background And Objectives: Laboratory-based stress inductions are commonly used to elicit acute stress but vary widely in their procedures and effectiveness. We compared the effects of stress induction techniques on measures of two major biological stress systems: the early sympathetic-adrenal-medullary (SAM) and the delayed hypothalamic-pituitary-adrenal (HPA) axis response.
Design: A review and meta-analysis to examine the relationship between stress induction techniques on cardiorespiratory and salivary measures of SAM and HPA system activity.
Med Sci Sports Exerc
December 2024
College of Life and Health Sciences, Chubu University, Kasugai, Aichi, JAPAN.
Purpose: Sleep deprivation and elevated blood pressure (BP) increase the risk of cardiovascular diseases. However, the effects of sleep deprivation on BP response, especially at exercise onset remain unclear. We aimed to elucidate the effects of experimental sleep deprivation (ESD) on resting and exercise BPs, including that at exercise onset, and investigate whether a night-time nap during ESD changes the ESD-altered BP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!