Recently, the increasing demand for telemedicine services has raised interest in the use of medical image protection technology. Conventional block ciphers are poorly suited to image protection due to the size of image data and increasing demand for real-time teleradiology and other online telehealth applications. To meet this challenge, this paper presents a novel chaos-based medical image encryption scheme. To address the efficiency problem encountered by many existing permutation-substitution type image ciphers, the proposed scheme introduces a substitution mechanism in the permutation process through a bit-level shuffling algorithm. As the pixel value mixing effect is contributed by both the improved permutation process and the original substitution process, the same level of security can be achieved in a fewer number of overall rounds. The results indicate that the proposed approach provides an efficient method for real-time secure medical image transmission over public networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2013.05.005 | DOI Listing |
Sleep
January 2025
UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).
View Article and Find Full Text PDFNeurol Sci
January 2025
Epilepsy Center, Department of Neurology, West China Hospital of Sichuan University, Chengdu, China.
This study intents to detect graphical network features associated with seizure relapse following antiseizure medication (ASM) withdrawal. Twenty-four patients remaining seizure-free (SF-group) and 22 experiencing seizure relapse (SR-group) following ASM withdrawal as well as 46 matched healthy participants (Control) were included. Individualized morphological similarity network was constructed using T1-weighted images, and graphic metrics were compared between groups.
View Article and Find Full Text PDFMAGMA
January 2025
Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.
View Article and Find Full Text PDFJ Ultrasound
January 2025
Department of Medical Imaging, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
This systematic review and meta-analysis aimed to assess the accuracy and success rate of ultrasound in determining fetal sex. A search was conducted on Medline, Cochrane Library, and EMBASE databases, and the reference lists of selected studies were also reviewed. Meta-analyses were performed using Revman 5.
View Article and Find Full Text PDFCurr Obes Rep
January 2025
Metabolism and Body Composition, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.
Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!