Raman spectroscopy can be used to assess the structure of naturally occurring carbonaceous materials (CM), which exist in a wide range of crystal structures. The sources of these geological and environmental materials include rocks, soils, river sediments, and marine sediment cores, all of which can contain carbonaceous material ranging from highly crystalline graphite to amorphous-like organic compounds. In order to fully characterize a geological sample and its intrinsic heterogeneity, several spectra must be collected and analyzed in a precise and repeatable manner. Here, we describe a suitable processing and analysis technique. We show that short-period ball-mill grinding does not introduce structural changes to semi-graphitized material and allows for easy collection of Raman spectra from the resulting powder. Two automated peak-fitting procedures are defined that allow for rapid processing of large datasets. For very disordered CM, Lorentzian profiles are fitted to five characteristic peaks, for highly graphitized material, three Voigt profiles are fitted. Peak area ratios and peak width measurements are used to classify each spectrum and allow easy comparison between samples. By applying this technique to samples collected in Taiwan after Typhoon Morakot, sources of carbon to offshore sediments have been identified. Carbon eroded from different areas of Taiwan can be seen mixed and deposited in the offshore flood sediments, and both graphite and amorphous-like carbon have been recycled from terrestrial to marine deposits. The practicality of this application illustrates the potential for this technique to be deployed to sediment-sourcing problems in a wide range of geological settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1366/12-06826 | DOI Listing |
Environ Monit Assess
January 2025
Sinopec Offshore Oilfield Services Company, Shanghai, 201208, China.
The concentration of trace elements in sediments is a critical element in the quality of nearshore environments. Geochemical background values are the normal concentrations of trace elements in the natural environment, and the use of different background values has resulted in different evaluations. Trace element (Cu, Pb, Zn, Cr, Cd, As, and Hg) concentration profiles along a sediment core were investigated to obtain background values and to assess the depositional processes and contamination levels in Laizhou Bay.
View Article and Find Full Text PDFSci Data
January 2025
Woodwell Climate Research Center, 149 Woods Hole Road, Falmouth, MA, 02540-1644, USA.
Arctic permafrost is undergoing rapid changes due to climate warming in high latitudes. Retrogressive thaw slumps (RTS) are one of the most abrupt and impactful thermal-denudation events that change Arctic landscapes and accelerate carbon feedbacks. Their spatial distribution remains poorly characterised due to time-intensive conventional mapping methods.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China.
Mangrove ecosystems are globally recognized for their blue carbon (C) sequestration capacity. Lignocellulosic detritus constitutes the primary C input to mangrove sediments, but the microbial processes involved in its bioprocessing remain unclear. Using lignocellulosic analysis and metagenomic sequencing across five 100-cm sediment cores, we found a high proportion of lignin (95.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Population Health Sciences, Duke University, Durham, NC 27708, United States; Duke Cancer Institute, Duke University, Durham, NC 27708, United States.
Radon is a naturally occurring radioactive gas derived from the decay of uranium in the Earth's crust. Radon exposure is the leading cause of lung cancer among non-smokers in the US. Radon infiltrates homes through soil and building foundations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Earth and Planetary Sciences, Yale University, New Haven 06511.
The origin of complex life and the evolution of terrestrial ecosystems are fundamental aspects of the natural history on Earth. Here, we present evidence for a protracted stabilization of the Earth's ozone layer. The destruction of atmospheric ozone today is inherently linked to the cycling of marine and atmospheric iodine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!