Anthrone and related hydroxyarenes: tautomerization and hydrogen bonding.

J Org Chem

Institut für Organische Chemie, Universität Duisburg-Essen, D-45117 Essen, Germany.

Published: August 2013

The keto-enolization of hydroxyl-substituted naphthols and 9-anthrols has been investigated by means of CBS-QB3 calculations. An excellent agreement between experiment and theory is found for the energetics for the anthrone (5) ⇌ anthrol (6) equilibrium, with an enthalpy of tautomerization, Δ(t)H, of 3.8 kcal mol(-1). In contrast, 1-naphthol is the preferred tautomer with a Δ(t)H = -9.0 kcal mol(-1). Substitution of the hydrogens at the adjacent carbons by hydroxyl groups leads to the formation of strong intramolecular hydrogen bonds within a six-membered ring in the enones and the enols. Due to the difference in the intramolecular hydrogen bond enthalpy, Δ(HB)H(intra), the equilibrium shifts further to the enone. Thus, for 1,8-dihydroxy-anthrone (anthralin, dithranol) Δ(t)H increases to 12.7 kcal mol(-1) with an enol/enone ratio of 10(-10). The solvent effect on the 5 ⇌ 6 equilibrium has been quantified by considering the formation of intermolecular hydrogen bond(s), leading to an acidity parameter α₂(H) for anthrol of 0.42. It is shown that the hydrogen bond donating ability of bulk methanol is greatly attenuated through the formation of cyclic oligomers. The benzylic and phenolic bond dissociation enthalpies for anthrone up to anthralin suggest some antioxidant potency but the precise (radical) mechanism of action remains uncertain.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo401243bDOI Listing

Publication Analysis

Top Keywords

kcal mol-1
12
intramolecular hydrogen
8
hydrogen bonds
8
hydrogen bond
8
hydrogen
5
anthrone hydroxyarenes
4
hydroxyarenes tautomerization
4
tautomerization hydrogen
4
hydrogen bonding
4
bonding keto-enolization
4

Similar Publications

Predicting reaction barriers for arbitrary configurations based on only a limited set of density functional theory (DFT) calculations would render the design of catalysts or the simulation of reactions within complex materials highly efficient. We here propose Gaussian process regression (GPR) as a method of choice if DFT calculations are limited to hundreds or thousands of barrier calculations. For the case of hydrogen atom transfer in proteins, an important reaction in chemistry and biology, we obtain a mean absolute error of 3.

View Article and Find Full Text PDF

Molecular modelling and optimization of a high-affinity nanobody targeting the nipah virus fusion protein through in silico site-directed mutagenesis.

Comput Biol Chem

January 2025

Virology and Vaccine Research and Development Program, Department of Science and Technology-Industrial Technology Development Institute, Taguig City, Metro Manila 1631, Philippines; S&T Fellows Program, Department of Science and Technology, Taguig City, Metro Manila 1631, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Metro Manila 1000, Philippines. Electronic address:

Nipah virus (NiV) is a re-emerging zoonotic pathogen with a high mortality rate and no effective treatments, prompting the search for new antiviral strategies. While conventional antiviral drugs are often limited by issues such as poor specificity, off-target effects, and resistance development, nanobodies offer distinct advantages. These small, single-domain antibodies exhibit high specificity and stability, making them ideal candidates for antiviral therapy.

View Article and Find Full Text PDF

Understanding the chemistry of the inert actinide oxo bond in actinyl ions AnO22+ is important for controlling actinide behavior in the environment, during separations, and in nuclear waste (An = U, Np, Pu). The thioether calixarene TC4A (4-tert-butyltetrathiacalix[4]arene) binds equatorially to [AnO2]n+ (An = U, Np) forming a conical pocket that differentiates the two trans-oxo groups. The 'ate' complexes, [A]2[UO2(TC4A)] (A = [Li(DME)2], HNEt3) and [HNEt3]2[NpO2(TC4A)], enable selective oxo chemistry.

View Article and Find Full Text PDF

Context: Cation-π and cation-lone pair interactions between 3d-metal (II) ions [Fe(II), Co(II), Ni(II) and Cu(II)] and furan are explored in the formation of 1:1 and 1:2 type complexes. Both cation-π (IE = -192.27 to -312.

View Article and Find Full Text PDF

Antibiotic-resistant bacteria are a serious global health threat, making infections harder to treat and increasing medical costs and mortality rates. To combat resistant bacterial strains, a series of compounds (QS1-12) were synthesized with an excellent yield of 85-92%. Initial assessments of these analogues as potential antibacterial agents were conducted through a preliminary screening against a panel of diverse bacterial strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!