Freshwater habitats make up only ∼0.01% of available aquatic habitat and yet harbor 40% of all fish species, whereas marine habitats comprise >99% of available aquatic habitat and have only 60% of fish species. One possible explanation for this pattern is that diversification rates are higher in freshwater habitats than in marine habitats. We investigated diversification in marine and freshwater lineages in the New World silverside fish clade Menidiinae (Teleostei, Atherinopsidae). Using a time-calibrated phylogeny and a state-dependent speciation-extinction framework, we determined the frequency and timing of habitat transitions in Menidiinae and tested for differences in diversification parameters between marine and freshwater lineages. We found that Menidiinae is an ancestrally marine lineage that independently colonized freshwater habitats four times followed by three reversals to the marine environment. Our state-dependent diversification analyses showed that freshwater lineages have higher speciation and extinction rates than marine lineages. Net diversification rates were higher (but not significant) in freshwater than marine environments. The marine lineage-through time (LTT) plot shows constant accumulation, suggesting that ecological limits to clade growth have not slowed diversification in marine lineages. Freshwater lineages exhibited an upturn near the recent in their LTT plot, which is consistent with our estimates of high background extinction rates. All sequence data are currently being archived on Genbank and phylogenetic trees archived on Treebase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/evo.12074 | DOI Listing |
J Helminthol
January 2025
Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Departamento de Patologia e Parasitologia, Maceió, Alagoas, Brasil.
Here, we present a comprehensive morphological and molecular phylogenetic analysis of sp. (Digenea: Clinostomidae) metacercariae parasitizing two freshwater fish species from Southeast Brazil: (piranha) and (tambuatá). The morphological examination revealed distinct characteristics of metacercariae in each host.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
CESAM & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
Worldwide, many coastal freshwater ecosystems suffer from seawater intrusion. In addition to this stressor, it is likely that the biota inhabiting these ecosystems will also need to deal with climate change-related temperature fluctuations. The resilience of populations to long-term exposure to these stressors will depend on their genetic diversity, a key for their adaptation to changing environments.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria.
Bivalve mollusks are globally distributed in marine and freshwater habitats. While exhibiting a relatively uniform bodyplan that is characterized by their eponymous bivalved shell that houses the soft-bodied animal, many lineages have acquired unique morphological, physiological, and molecular innovations that account for their high adaptability to the various properties of aquatic environments such as salinity, flow conditions, or substrate composition. This renders them ideal candidates for studies into the evolutionary trajectories that have resulted in their diversity, but also makes them important players for research concerned with climate change-induced warming and acidification of aquatic habitats.
View Article and Find Full Text PDFProtist
January 2025
School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom. Electronic address:
Choanoflagellate species have been taxonomically divided upon the morphological and developmental basis of their extracellular coat (periplast). Species within the order Craspedida possess a purely organic periplast, whereas taxa of the order Acanthoecida have an additional silica based periplast termed the lorica. Whilst small-scale phylogenetic studies have recovered the two orders as monophyletic, recent phylogenomic analyses have rejected the monophyly of the craspedids.
View Article and Find Full Text PDFZool Res
January 2025
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China. E-mail:
Avian genomes exhibit compact organization and remarkable chromosomal stability. However, the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored. This study generated a diploid genome assembly for the golden pheasant ( ), a species distinguished by the vibrant plumage of males.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!