We report a novel chemiluminescence diagnosis system for high-throughput human IgA detection by inkjet nanoinjection on a multicapillary glass plate. As proof-of-concept, microhole-based polydimethylsiloxane (PDMS) sheets were aligned on a multicapillary glass plate to form a microwell array as microreactors for enzyme-linked immunosorbent assay (ELISA). The multicapillary glass plate was utilized as a switch that controlled the holding/passing of the solution. Further, anti-IgA-labeled polystyrene (PS) microbeads was assembled into the microwell array, and an inkjet nanoinjection was specially used to distribute the sample and reagent solution for chemiluminescence ELISA, enabling high-throughput detection of human IgA. As a result, the performance of human IgA tests revealed a wider range for the calibration curve and a lower limit of detection (LOD) of 0.1 ng mL(-1) than the ELISA by a standard 96-well plate. The analysis time and reagent consumption were significantly decreased. The IgA concentrations in saliva samples were determined after 10000-fold dilution by the developed ELISA system showing comparable results by conventional immune assay with 96-wells. Thus, we believe that the inkjet nanoinjection for high-throughput chemiluminescence immunoassay on a multicapillary glass plate will be promising in disease diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac4013336 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!