Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize.

BMC Genomics

State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.

Published: July 2013

Background: Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in various physiological processes, including plant growth and development, abiotic and biotic stress responses and plant hormone signaling in plants.

Results: In this study, we performed a bioinformatics analysis of the entire maize genome and identified 40 CDPK genes. Phylogenetic analysis indicated that 40 ZmCPKs can be divided into four groups. Most maize CDPK genes exhibited different expression levels in different tissues and developmental stages. Twelve CDPK genes were selected to respond to various stimuli, including salt, drought and cold, as well as ABA and H2O2. Expression analyses suggested that maize CDPK genes are important components of maize development and multiple transduction pathways.

Conclusion: Here, we present a genome-wide analysis of the CDPK gene family in maize for the first time, and this genomic analysis of maize CDPK genes provides the first step towards a functional study of this gene family in maize.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704972PMC
http://dx.doi.org/10.1186/1471-2164-14-433DOI Listing

Publication Analysis

Top Keywords

cdpk genes
20
maize cdpk
12
calcium-dependent protein
8
maize
8
gene family
8
family maize
8
cdpk
6
analysis
5
genes
5
genome-wide identification
4

Similar Publications

Calcium-dependent protein kinases (CDPKs) are a crucial class of calcium-signal-sensing and -response proteins that significantly regulate abiotic stress. is a member of the Brassicaceae family that primarily grows in the karst regions of southwestern China, with a notable tolerance to high-calcium soils. Currently, the function of the family of genes in has yet to be explored.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPKs) are very effective calcium signal decoders due to their unique structure, which mediates substrate-specific [Ca] signalling through phosphorylation. However, Ca-dependence makes it challenging to study CDPKs. This work focused on the effects of the overexpression of native and modified forms of the AtCPK1 gene on the tolerance of tobacco plants to heat and cold.

View Article and Find Full Text PDF

Background: Rice is the main food crop for much of the population in China. Therefore, selecting and breeding new disease resistance and drought tolerance in rice is essential to ensure national food security. The utilization of heterosis has significantly enhanced rice productivity, yet many of the molecular mechanisms underlying this phenomenon remain largely unexplored.

View Article and Find Full Text PDF

Background: Calcium-dependent protein kinases (CDPKs), play multiple roles in plant development, growth and response to bio- or abiotic stresses. Calmodulin-like domains typically contain four EF-hand motifs for Ca²⁺ binding. The CDPK gene family can be divided into four subgroups in Arabidopsis, and it has been identified in many plants, such as rice, tomato, but has not been investigated in alfalfa (Medicago sativa subsp.

View Article and Find Full Text PDF

Understanding the Development of Compensatory Pathways in a Mutant Malaria Parasite Harbouring Hypomorphic Allele of Plant-Like Kinases.

J Vis Exp

November 2024

Cellular and Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University; Laboratory of Malaria and Vector Research and National Institutes of Allergy and Infectious Diseases, National Institutes of Health;

Article Synopsis
  • The malaria parasite can alter its transcriptome to resist the effects of drugs, particularly affecting multigene families.
  • CDPK family protein kinases in Plasmodium falciparum are crucial for its development and are potential targets for anti-malarial drugs.
  • By using a chemical genetics approach to study a mutant parasite with a modified cdpk1 gene, researchers aim to discover compensatory mechanisms that could be targeted to combat drug resistance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!