The present study was aimed at exploring the targeting potential of LTA-anchored chitosan nanoparticles (CH-NP) specifically to M cell following oral immunization. The lectinized CH-NP exhibited 7-29% coupling capacity depending upon the amount of glutaraldehyde added. Induction of the mucosal immunity was assessed by estimating secretory IgA level in the salivary, intestinal and vaginal secretions, and cytokine (IL-2 and IFN-γ) levels in the spleen homogenates. The results demonstrated that LTA-anchored CH-NP elicited strong humoral and cellular responses and hence could be a competent carrier-adjuvant delivery system for oral mucosal immunization against Hepatitis B.

Download full-text PDF

Source
http://dx.doi.org/10.3109/21691401.2013.809726DOI Listing

Publication Analysis

Top Keywords

chitosan nanoparticles
8
mucosal immunization
8
immunization hepatitis
8
development characterization
4
characterization lta-appended
4
lta-appended chitosan
4
nanoparticles mucosal
4
hepatitis study
4
study aimed
4
aimed exploring
4

Similar Publications

Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.

View Article and Find Full Text PDF

A PDMS/chitosan/MPMs composite film based on multi-field coupling enhancement for African swine fever virus P72 protein detection.

Mikrochim Acta

January 2025

Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China.

African swine fever (ASF) is an acute hemorrhagic disease in pigs caused by the African swine fever virus (ASFV), which has a high mortality rate and brought great damage to global pig farming industry. At present, there is no effective treatment or vaccine to combat ASFV infection, so early detection of ASFV has become particularly important. Therefore, the PDMS/chitosan/MPMs composite film was proposed to detect ASFV P72.

View Article and Find Full Text PDF

Cadmium translocation combined with metabolomics analysis revealed potential mechanisms of MT@MSN-CS and GSH@MSN-CS in reducing cadmium accumulation in rice (Oryza sativa L.) grains.

Environ Sci Pollut Res Int

January 2025

Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Department of Environmental Engineering, Zhejiang University, Zhejiang Province, Hangzhou, 310058, P.R. China.

Applying nano-delivery systems for phytohormones via foliar application has proven effective in reducing grain cadmium (Cd) levels in crops. However, the mechanisms underlying this reduction remain inadequately understood. This study integrated the determination of leaf photosynthetic parameters, Cd translocation analysis, and metabolomics to elucidate the effects of reduced glutathione (GSH) and melatonin (MT), delivered with or without chitosan-encapsulated mesoporous silica nanoparticles (MSN-CS), on grain Cd levels in rice.

View Article and Find Full Text PDF

Polymer-based nanocomposite coatings that are enhanced with nanoparticles have gained recognition as effective materials for antibacterial purposes, providing improved durability and biocidal effectiveness. This research introduces an innovative chitosan-based polymer nanocomposite, enhanced with titanium oxide nanopowders and carbon quantum dots. The material was synthesized via the sol-gel process and applied to 316L stainless steel through dip-coating.

View Article and Find Full Text PDF

A catalytic system has been developed, utilizing metal nanoparticles confined within a chitosan‑carbon black composite hydrogel (M-CH/CB), aimed at improving ease of use and recovery in catalytic processes. The M-CH/CBs were characterized by XRD, SEM, and EDX, the M-CH/CB system demonstrated exceptional catalytic activity in producing hydrogen gas (H) from water and methanol, and in reducing several hazardous materials including 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,6-dinitrophenol (2,6-DNP), acridine orange (ArO), methyl orange (MO), congo red (CR), methylene blue (MB), and potassium ferricyanide (PFC). Among the tested nanocatalysts, CH/CB showed the highest efficiency for H₂ production, while Fe-CH/CB excelled in contaminant reduction (7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!