Background: Naloxone may be administered in conjunction with morphine to reduce the risk of opioid-induced pruritis. Combining these drugs for coadministration may be beneficial, but little is known about their physical compatibility and stability in combined solutions.
Objective: To describe the physical compatibility and stability of morphine sulphate and naloxone hydrochloride (at various concentrations) in IV admixtures.
Methods: The physical compatibility and stability of admixtures of morphine 1000 μg/mL and naloxone 4 μg/mL, 12.5 μg/mL, and 25 μg/mL in 0.9% sodium chloride were studied. For each concentration of naloxone, one bag was stored at room temperature (22°C) for 72 h and one bag was stored under refrigeration (4°C) for 30 days. For all preparations, physical characteristics, including pH, colour, and formation of precipitate, were evaluated. The samples were also analyzed by a stability-indicating high-performance liquid chromatographic method. Stability was defined as the retention of at least 90% of the initial concentration.
Results: No notable changes in pH or colour and no macroprecipitation were observed in any of the preparations after storage at 22°C for up to 72 h or at 4°C for up to 30 days. All preparations maintained more than 90% of the initial concentrations of morphine and naloxone at the end of the respective study periods. The calculated lower limit of the 95% confidence interval also indicated that 90% or more of the initial concentration remained at the end of each study period.
Conclusion: Admixtures of morphine sulphate and naloxone hydrochloride were stable for 72 h at room temperature and for 30 days with refrigeration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694937 | PMC |
http://dx.doi.org/10.4212/cjhp.v66i3.1253 | DOI Listing |
Crit Rev Food Sci Nutr
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, China.
spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.
View Article and Find Full Text PDFSci Rep
January 2025
School of EEE, SASTRA University, Thanjavur, Tamil Nadu, India.
This paper presents a scalable reflective metasurface design optimized for 5G and beyond (B5G) wireless communications, featuring a unique combination of passive metasurface elements. The proposed design emphasizes a less complex structural configuration, facilitating easy scalability and cost-effective fabrication. By implementing a single-layer structure, the metasurface enables straightforward integration with existing B5G infrastructure and demonstrates compatibility with emerging intelligent surface technologies, such as Reconfigurable Intelligent Surfaces (RIS).
View Article and Find Full Text PDFNat Commun
January 2025
Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.
Liquid organic hydrogen carriers (LOHCs) are considered promising carriers for large-scale H storage and transportation, among which the toluene-methylcyclohexane cycle has attracted great attention from industry and academia because of the low cost and its compatibility with the current infrastructure facility for the transportation of chemicals. The large-scale deployment of the H storage/transportation plants based on the toluene-methylcyclohexane cycle relies on the use of high-performance catalysts, especially for the H release process through the dehydrogenation of methylcyclohexane. In this work, we have developed a highly efficient catalyst for MCH dehydrogenation reaction by incorporating subnanometer PtFe clusters with precisely controlled composition and location within a rigid zeolite matrix.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China Normal University, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, Panyu University Mega Center, 510006, Guangzhou, CHINA.
Scintillators that convert ionizing radiation into low-energy photons are essential for medical diagnostics and industrial inspections. Despite advances in X-ray scintillators, challenges remain in achieving high efficiency, environmental compatibility, stability, and flexibility. Here, we present experimental investigations of a new type of europium(III)-based hybrid ternary complex scintillators for improved X-ray detection and imaging.
View Article and Find Full Text PDFACS Nano
January 2025
Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
SiO-based anodes, considered the most promising candidate for high-energy density batteries, have long been bothered by mechanical integrity issues. Research efforts focus on particle modifications, often overlooking the enhancement of interparticle connections, which can reduce the active material content within the electrode. Herein, an integrated electrode with strong covalent bonding at the electrode scale is designed, achieving excellent mechanical stability with ∼95 wt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!