During the past decade there has been an increasing recognition of the incidence of mild traumatic brain injury (mTBI) and a better understanding of the subtle neurological and cognitive deficits that may result from it. A substantial, albeit suboptimal, effort has been made to define diagnostic criteria for mTBI and improve diagnostic accuracy. Thus, biomarkers that can accurately and objectively detect brain injury after mTBI and, ideally, aid in clinical management are needed. In this review, we discuss the current research on serum biomarkers for mTBI including their rationale and diagnostic performances. Sensitive and specific biomarkers reflecting brain injury can provide important information regarding TBI pathophysiology and serve as candidate markers for predicting abnormal computed tomography findings and/or the development of residual deficits in patients who sustain an mTBI. We also outline the roles of biomarkers in settings of specific interest including pediatric TBI, sports concussions and military injuries, and provide perspectives on the validation of such markers for use in the clinic. Finally, emerging proteomics-based strategies for identifying novel markers will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/med.21295DOI Listing

Publication Analysis

Top Keywords

brain injury
16
mild traumatic
8
traumatic brain
8
injury mtbi
8
brain
5
mtbi
5
challenge mild
4
injury
4
injury role
4
role biochemical
4

Similar Publications

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

The transcriptional response of cortical neurons to concussion reveals divergent fates after injury.

Nat Commun

January 2025

Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

Traumatic brain injury (TBI) is a risk factor for neurodegeneration, however little is known about how this kind of injury alters neuron subtypes. In this study, we follow neuronal populations over time after a single mild TBI (mTBI) to assess long ranging consequences of injury at the level of single, transcriptionally defined neuronal classes. We find that the stress-responsive Activating Transcription Factor 3 (ATF3) defines a population of cortical neurons after mTBI.

View Article and Find Full Text PDF

Axons in the mammalian brain show significant diversity in myelination motifs, displaying spatial heterogeneity in sheathing along individual axons and across brain regions. However, its impact on neural signaling and susceptibility to injury remains poorly understood. To address this, we leveraged cable theory and developed model axons replicating the myelin sheath distributions observed experimentally in different regions of the mouse central nervous system.

View Article and Find Full Text PDF

Diabetes Mellitus Impairs Blood-Brain Barrier Integrality and Microglial Reactivity.

J Biophotonics

January 2025

Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.

Diabetes mellitus (DM), a chronic metabolic disorder that adversely affects the blood-brain barrier (BBB) and microglial function in the central nervous system (CNS), contributing to neuronal damage and neurodegenerative diseases. However, the underlying molecular mechanisms linking diabetes to BBB dysfunction and microglial dysregulation remain poorly understood. Here, we assessed the impacts of diabetes on BBB and microglial reactivity and investigated its mechanisms.

View Article and Find Full Text PDF

hESC-derived extracellular vesicles enriched with MFGE-8 and the GSH redox system act as senotherapeutics for neural stem cells in ischemic stroke.

Free Radic Biol Med

January 2025

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea. Electronic address:

Human embryonic stem cells (hESCs) and their extracellular vesicles (EVs) hold significant potential for tissue repair and regeneration. Neural stem cells (NSCs) in the adult brain often acquire senescent phenotypes after ischemic injuries, releasing neurodegenerative senescence-associated secretory phenotype factors. In this study, we investigated the senotherapeutic effects of hESC-EVs on NSCs and confirmed their neuroprotective effects in neurons via rejuvenation of NSC secretions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!