Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle.

J Orthop Res

Center of Experimental Orthopaedics, Saarland University, Building 37-38, D-66421, Homburg/Saar, Germany; Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany.

Published: November 2013

Associations between topographic location and articular cartilage repair in preclinical animal models are unknown. Based on clinical investigations, we hypothesized that lesions in the ovine femoral condyle repair better than in the trochlea. Full-thickness chondral and osteochondral defects were simultaneously established in the weightbearing area of the medial femoral condyle and the lateral trochlear facet in sheep, with chondral defects subjected to subchondral drilling. After 6 months in vivo, cartilage repair and osteoarthritis development was evaluated by macroscopic, histological, immunohistochemical, and biochemical analyses. Macroscopic and histological articular cartilage repair and type-II collagen immunoreactivity were better in the femoral trochlea, regardless of the defect type. Location-independently, osteochondral defects induced more osteoarthritic degeneration of the adjacent cartilage than drilled chondral lesions. DNA and proteoglycan contents of chondral defects were higher in the condyle, reflecting physiological topographical differences. The results indicate that topographic location dictates the structural patterns and biochemical composition of the repair tissue in sheep. These findings suggest that repair of cartilage defects at different anatomical sites of the ovine stifle joint needs to be assessed independently and that the sheep trochlea exhibits cartilage repair patterns reflective of the human medial femoral condyle.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.22418DOI Listing

Publication Analysis

Top Keywords

cartilage repair
16
osteochondral defects
12
femoral condyle
12
chondral osteochondral
8
topographic location
8
articular cartilage
8
medial femoral
8
chondral defects
8
macroscopic histological
8
repair
7

Similar Publications

Background: Timely recognition and addressing of concomitant cartilage damage at the time of meniscal allograft transplantation (MAT) is critical to warrant future success. However, there remains a scarcity of data comparing outcomes between MAT with and without cartilage procedures.

Purpose: To compare patient-reported outcomes and rates of complications, failures, reoperations, and graft survivorship after MAT with concomitant cartilage procedures (MAT/Cart) and MAT without (MAT/NoCart).

View Article and Find Full Text PDF

Purpose: This study aimed to investigate whether combining the analysis of different magnetic resonance imaging (MRI) signs enhances the diagnostic accuracy of lateral meniscus posterior root tears (LMPRTs) in patients with anterior cruciate ligament (ACL) injuries. We hypothesised that analysing the cleft, ghost and truncated triangle signs and lateral meniscus extrusion (LME) measurement together would improve the preoperative MRI-based diagnosis of LMPRTs.

Methods: This retrospective study used prospectively collected registry data from two academic centres, including patients undergoing primary or revision ACL reconstruction (ACLR) and LMPRT repair.

View Article and Find Full Text PDF

Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.

View Article and Find Full Text PDF

Purpose: To evaluate the radiological and clinical outcomes in two patient groups: first, varus aligned medial meniscus posterior root tear (MMPRT) patients who underwent posteromedial open wedge high tibial osteotomy (PMOWHTO) and simultaneous root repair; second, patients with varus medial knee osteoarthritis without MMPRT who underwent PMOWHTO.

Methods: Patients had MMPRT repair concomitant with PMOWHTO and varus medial knee osteoarthritis without concomitant root tear patients who underwent PMOWHTO and were reviewed. Radiographic parameters, medial meniscus extrusion (MME) and Knee Society Scores [KSSs, including the following subscores: knee score (KS) and knee function score (KFS)] were evaluated.

View Article and Find Full Text PDF

Cartilage repair remains a critical challenge in orthopaedic medicine due to the tissue's limited self-healing ability, contributing to degenerative joint conditions such as osteoarthritis (OA). In response, regenerative medicine has developed advanced therapeutic strategies, including cell-based therapies, gene editing, and bioengineered scaffolds, to promote cartilage regeneration and restore joint function. This narrative review aims to explore the latest developments in cartilage repair techniques, focusing on mesenchymal stem cell (MSC) therapy, gene-based interventions, and biomaterial innovations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!