A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hyaluronic acid-dependent protection against UVB-damaged human corneal cells. | LitMetric

Hyaluronic acid-dependent protection against UVB-damaged human corneal cells.

Environ Mol Mutagen

Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan.

Published: July 2013

Within ultraviolet radiation, ultraviolet B (UVB) is the most energetic and damaging to humans. At the protein level, UVB irradiation downregulates the expression of antioxidant enzymes leading to the accumulation of reactive oxygen species (ROS). Due to lacking of a global analysis of UVB-modulated corneal proteome, we investigate in vitro the mechanism of UVB-induced corneal damage to determine whether hyaluronic acid (HA) is able to reduce UVB irradiation-induced injury in human corneal epithelial cells. Accordingly, human corneal epithelial cell lines (HCE-2) were irradiated with UVB, followed by incubation with low molecular weight HA (LMW-HA, 100 kDa) or high molecular weight HA (HMW-HA, 1,000 kDa) to investigate the physiologic protection of HMW-HA in UVB-induced corneal injury, and to perform a global proteomic analysis. The data demonstrated that HA treatment protects corneal epithelial cells in the UVB-induced wound model, and that the molecular weight of HA is a crucial factor. Only HMW-HA significantly reduces the UVB-induced cytotoxic effects in corneal cells and increases cell migration and wound-healing ability. In addition, proteomic analysis showed that HMW-HA might modulate cytoskeleton regulation, signal transduction, biosynthesis, redox regulation, and protein folding to stimulate wound healing and to prevent these UVB-damaged cells from cell death. Further studies evidenced membrane-associated progesterone receptor component 1 (mPR) and malate dehydrogenase (MDH2) play essential roles in protecting corneal cells from UVB irradiation. This study reports on UVB-modulated cellular proteins that might play an important role in UVB-induced corneal cell injury and show HMW-HA to be a potential substance for protecting corneal cells from UVB-induced injury.

Download full-text PDF

Source
http://dx.doi.org/10.1002/em.21794DOI Listing

Publication Analysis

Top Keywords

corneal cells
16
human corneal
12
uvb-induced corneal
12
corneal epithelial
12
molecular weight
12
corneal
11
uvb irradiation
8
epithelial cells
8
proteomic analysis
8
cells uvb-induced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!