Purpose: Our goal was to develop a potent humanized antibody against mouse/human CXCL12. This report summarized its in vitro and in vivo activities.

Experimental Design: Cell surface binding and cell migration assays were used to select neutralizing hamster antibodies, followed by testing in several animal models. Monoclonal antibody (mAb) 30D8 was selected for humanization based on its in vitro and in vivo activities.

Results: 30D8, a hamster antibody against mouse and human CXCL12α, CXCL12β, and CXCL12γ, was shown to dose-dependently block CXCL12α binding to CXCR4 and CXCR7, and CXCL12α-induced Jurkat cell migration in vitro. Inhibition of primary tumor growth and/or metastasis was observed in several models. 30D8 alone significantly ameliorated arthritis in a mouse collagen-induced arthritis model (CIA). Combination with a TNF-α antagonist was additive. In addition, 30D8 inhibited 50% of laser-induced choroidal neovascularization (CNV) in mice. Humanized 30D8 (hu30D8) showed similar in vitro and in vivo activities as the parental hamster antibody. A crystal structure of the hu30D8 Fab/CXCL12α complex in combination with mutational analysis revealed a "hot spot" around residues Asn(44)/Asn(45) of CXCL12α and part of the RFFESH region required for CXCL12α binding to CXCR4 and CXCR7. Finally, hu30D8 exhibited fast clearance in cynomolgus monkeys but not in rats.

Conclusion: CXCL12 is an attractive target for treatment of cancer and inflammation-related diseases; hu30D8 is suitable for testing this hypothesis in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-13-0943DOI Listing

Publication Analysis

Top Keywords

vitro vivo
12
humanized antibody
8
cell migration
8
hamster antibody
8
cxcl12α binding
8
binding cxcr4
8
cxcr4 cxcr7
8
antibody
5
30d8
5
development preclinical
4

Similar Publications

Cystine-Modified Lignin-Copper Coordination Nanocarriers Improve the Therapeutic Efficacy of Tyrosine Kinase Inhibition via Cuproptosis.

ACS Appl Mater Interfaces

January 2025

Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China.

The clinical application of tyrosine kinase inhibitors (TKIs) is rapidly growing and has emerged as a cornerstone in the treatment of both solid tumors and hematologic malignancies. However, resistance to TKI targets and disease progression remain inevitable. Nanocarrier-mediated delivery has emerged as a promising strategy to overcome the limitations of the TKI application.

View Article and Find Full Text PDF

Objective: Loss of function of the phospholipid scramblase (PLS) TMEM16F results in Scott Syndrome, a hereditary bleeding disorder generally attributed to intrinsic platelet dysfunction. The role of TMEM16F in endothelial cells, however, is not well understood. We sought to test the hypothesis that endothelial TMEM16F contributes to hemostasis by measuring bleeding time and venous clotting in endothelial-specific knockout (ECKO) mice.

View Article and Find Full Text PDF

Cerebral ischemic stroke, neuronal death, and inflammation bring difficulties in neuroprotection and rehabilitation. In this study, we developed and designed the ability of natural lactoferrin-polyethylene glycol-polyphenylalanine-baicalein nanomicelles (LF-PEG-PPhe-Bai) to target and reduce these pathological processes, such as neurological damage and cognitive impairment in the stages of poststroke. Nanomicelles made from biocompatible materials have improved bioavailability and targeted distribution to afflicted brain areas.

View Article and Find Full Text PDF

Prion Protein Endoproteolysis: Cleavage Sites, Mechanisms and Connections to Prion Disease.

J Neurochem

January 2025

Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada.

Highly abundant in neurons, the cellular prion protein (PrP) is an obligatory precursor to the disease-associated misfolded isoform denoted PrP that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrP to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrP are referred to as α- and β-cleavages, and in this review we outline the sites within PrP at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology.

View Article and Find Full Text PDF

Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) is a neurodegenerative disease caused by mutations in the gene encoding transthyretin (TTR). Despite amyloid deposition being pathognomonic for diagnosis, this pathology in nervous tissues cannot fully account for nerve degeneration, implying additional pathophysiology for neurodegeneration, which, however, has not yet been fully elucidated. In this study, neuroinflammation in ATTRv-PN was investigated by examining nerve morphometry, the blood-nerve barrier, and macrophage infiltration in the sural nerves of ATTRv-PN patients and the sciatic nerves of a complementary mouse system, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!