Optimization of Yb-free Er-doped fiber for lasers and amplifiers cladding pumped at 976 nm was performed in this Letter. The single-mode fiber design includes an increased core diameter of 34 μm and properly chosen erbium and co-dopant concentrations. We demonstrate an all-fiber high power laser and power amplifier based on this fiber with the record slope efficiency of 40%. To the best of our knowledge, the achieved output power of 75 W is the highest power reported for such lasers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.38.002230DOI Listing

Publication Analysis

Top Keywords

cladding pumped
8
40% efficiency
4
efficiency single-mode
4
single-mode all-fiber
4
all-fiber erbium-doped
4
erbium-doped laser
4
laser cladding
4
pumped 976
4
976 optimization
4
optimization yb-free
4

Similar Publications

Article Synopsis
  • - The multicore fiber amplifier is essential for advanced spatial division multiplexing (SDM) communication, but it has more complex challenges than traditional single-core systems, prompting the search for a more efficient solution.
  • - An innovative triple cladding 13-core Er/Yb co-doped microstructured fiber (13CEYDMOF) is proposed to balance performance factors like efficiency and cost, featuring unique peanut-shaped air holes that improve excitation and reduce fiber size.
  • - Experimental results show that the 13CEYDMOF achieved impressive performance metrics, including an average gain of 23.8 dB and a low noise figure, making it suitable for transmitting 13 spatial channels effectively in the telecommunication band.
View Article and Find Full Text PDF

Multicore fibers are promising structures with specific light propagation properties, which can be managed to benefit several applications in optical communications, fiber lasers and amplifiers, high-resolution imaging, and fiber-based sensors. The current use of multicore fibers in laser technology is mainly focused on in-phase coherent beam combining in far-field regions (out-cavity) using bulk optical elements. However, this approach is challenging in terms of the power scalability of all-fiber lasers (intra-cavity), particularly with using low-gain media, where it is needed to provide mode-coupling (supermode propagation) stability along relatively long lengths.

View Article and Find Full Text PDF

Frequency modulation of narrow-linewidth lasers can cause coherent backscattering in cladding-pumped fiber amplifiers. This detrimental effect can be observed in Tm-based fiber amplifiers and can be an additional limitation for power scaling applications. We investigate such instabilities in Tm- and Tm/Ho-doped fiber amplifiers for a wide range of design parameters (active fiber length, pumping scheme, dopant type) and operation regimes (laser frequency tuning rate, amplifier gain).

View Article and Find Full Text PDF

Reciprocating pumps are widely used in the current oil extraction process, and the plunger is a vulnerable part of these pumps that directly determines the service life of the reciprocating pump. To improve the service life of plungers, Ni60/WC coatings were applied to the surface of 45-steel plungers via laser cladding technology to improve wear and corrosion resistance. Defect-free and dense Ni60/WC coatings were successfully applied to the plunger surface with strong metallurgical bonding between the coating and the substrate.

View Article and Find Full Text PDF

Halide Perovskite Thin Film Lasing Mode Control.

ACS Appl Mater Interfaces

October 2024

Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea.

Metal halide perovskite semiconductors have emerged as highly efficient amplifying materials; to ensure practical applicability, it is important to have precise control over the spectral and polarization characteristics of lasing emission. In this study, we present effective strategies for manipulating single- and multimode lasing from surface-emitting and optically pumped perovskite distributed feedback lasers. We show that cladding structures can be made to modify the optical properties of guided transverse electric and magnetic modes within the gain medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!