An isothermal, enzyme-free and ultrasensitive protocol for electrochemical detection of DNA is proposed based on the ingenious combination of target catalyzed hairpin assembly and hybridization chain reaction (HCR) strategies for two-step signal amplification. The DNA hairpin assembly on the electrode is triggered by target DNA, accompanied by the release of target DNA for the successive hybridization and assembly process. The newly emerging DNA fragment on the electrode after hairpin assembly is further used to propagate the HCR between methylene blue-labeled signal probe and auxiliary probe, inducing a remarkably amplified electrochemical signal. The current dual signal amplification strategy is relatively simple and inexpensive owing to avoid the use of any kind of enzyme or sophisticated equipment. It can achieve a sensitivity of 0.1 fM with a wide linear dynamic range from 1 × 10(-15) to 1 × 10(-10)M and discriminate mismatched DNA from perfect matched target DNA with a high selectivity. The high sensitivity and selectivity make this method a great potential for early diagnosis in gene-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2013.05.037DOI Listing

Publication Analysis

Top Keywords

hairpin assembly
16
target dna
12
enzyme-free ultrasensitive
8
electrochemical detection
8
target catalyzed
8
catalyzed hairpin
8
assembly hybridization
8
hybridization chain
8
chain reaction
8
signal amplification
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!