To evaluate the process parameters for the production of plasmid DNA/cationic liposome (pDNA/CL) complexes in microfluidic systems, we studied two microfluidic devices: one with simple straight hydrodynamic flow focusing (SMD) and a second one with barriers in the mixing microchannel (patterned walls, PMD). A conventional bulk mixing method was used as a comparison to microfluidic mixing. The CL and the pDNA were combined at a molar positive/negative charge ratio of 6. The results showed that incorporating pDNA into the liposomal structures was different for the two microfluidic devices and that the temperature influenced the average size of complexes produced by the simple microfluidic device, while it did not influence the average complex size in the patterned wall device. Differences were also observed in pDNA probe accessibility in the complexes. The SMD yielded a similar quantity of non-electrostatic bound pDNA as that provided by the bulk mixing method. The complexes produced by the PMD had their pDNA probe accessibility decreased in 40% and achieved lower in vitro transfection levels in HeLa cells than the bulk mixing and simple microfluidic complexation methods. These differences are most likely due to different degrees of association between pDNA and CL, as controlled by the microfluidic devices. This study contributes to the development of rational strategies for controlling the formation of pDNA/CL complexes for further applications in gene and vaccine therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2013.04.003 | DOI Listing |
Sensors (Basel)
December 2024
Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka 239-0802, Kanagawa, Japan.
Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Physical and Colloid Chemistry, Kazan National Research Technological University, 420015 Kazan, Russia.
Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.
View Article and Find Full Text PDFSci Adv
January 2025
Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
Measuring virus in biofluids is complicated by confounding biomolecules coisolated with viral nucleic acids. To address this, we developed an affinity-based microfluidic device for specific capture of intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach used an engineered angiotensin-converting enzyme 2 to capture intact virus from plasma and other complex biofluids.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
Revealing how individual cells alter their secretions over time is crucial for understanding their responses to environmental changes. Key questions include: When do cells modify their functions and states? What transitions occur? Insights into the kinetic secretion trajectories of various cell types are essential for unraveling complex biological systems. This review highlights seven microfluidic technologies for time-resolved single-cell secretion analysis: 1.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, China. Electronic address:
Background: The early detection of Hepatocellular Carcinoma (HCC) is crucial for improving patient survival rates.Early diagnosis of HCC can significantly enhance treatment outcomes and reduce disease progression. Antigen detection of tumor markers is one of the important diagnostic methods for HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!