Rapid construction of parallel analysis of RNA end (PARE) libraries for Illumina sequencing.

Methods

Department of Plant & Soil Sciences, University of Delaware, Newark, DE 19711, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA. Electronic address:

Published: May 2014

MicroRNAs (miRNAs) are ∼21nt small RNAs that pair to their target mRNAs and in many cases trigger cleavage, particularly in plants. Although many computational tools can predict miRNA:mRNA interactions, it remains critical to validate cleavage events, due to miRNA function in translational repression or due to high rates of false positives (over 90%) for unvalidated target predictions. A few years ago, three laboratories described similar methods to validate cleavage of miRNA targets by the cloning en masse of 5' ends of cleaved or uncapped mRNAs. To take advantage of the recent progress in high-throughput sequencing technology, we have devised an updated protocol to (1) enable much faster library preparation, and (2) reduce the cost by pooling indexed samples together for sequencing. Here we provide a step-by-step protocol for PARE library construction, starting from total RNA. This protocol has been successfully used in our laboratory to validate miRNA targets in a variety of plant species. We also provide advice for troubleshooting on some common issues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2013.06.025DOI Listing

Publication Analysis

Top Keywords

validate cleavage
8
mirna targets
8
rapid construction
4
construction parallel
4
parallel analysis
4
analysis rna
4
rna pare
4
pare libraries
4
libraries illumina
4
illumina sequencing
4

Similar Publications

The ongoing panzootic of highly pathogenic avian influenza (HPAI) A(H5) viruses is the largest in history, with unprecedented transmission to multiple mammalian species. Avian influenza A viruses of the H5 subtype circulate globally among birds and are classified into distinct clades based on their hemagglutinin (HA) genetic sequences. Thus, the ability to accurately and rapidly assign clades to newly sequenced isolates is key to surveillance and outbreak response.

View Article and Find Full Text PDF

Size-Dependent Cascade Enhancement of T-T Dual-Modal MRI in Tumors.

Adv Mater

January 2025

State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.

Currently, there is no conclusive evidence indicating that in situ self-assembled Gd nanostructures of varying sizes demonstrate distinct T and T signal enhancement capabilities. Furthermore, it remains uncertain whether size adjustment can effectively achieve enhanced T-T dual-modal MRI. To address these uncertainties, a two-step in situ self-assembly strategy is developed.

View Article and Find Full Text PDF

The SARS-CoV-2 papain-like protease PLpro has multiple roles in the viral replication cycle, related to both its polypeptide cleavage function and its ability to antagonize the host immune response. Targeting the PLpro function is recognized as a promising mechanism to modulate viral replication, while supporting host immune responses. However, the development of PLpro-specific inhibitors remains challenging.

View Article and Find Full Text PDF

Background: Ropivacaine (Rop) is a local anesthetic that is widely used but is also potentially harmful. Quercetin (Quer) is a flavonoid component found in many plants and traditional Chinese medicines. It possesses anti-oxidant, anti-inflammatory, antitumor, and neuroprotective properties as a pharmaceutical.

View Article and Find Full Text PDF

Dual sgRNA-directed knockout gene expression using CRISPR/Cas9 technology for editing gene in triple-negative breast cancer.

Narra J

December 2024

Animal Research Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) offers a robust approach for genome manipulation, particularly in cancer therapy. Given its high expression in triple-negative breast cancer (TNBC), targeting with CRISPR/Cas9 holds promise as a therapeutic strategy. The aim of this study was to design specific single guide ribonucleic acid (sgRNA) for CRISPR/Cas9 to permanently knock out the gene, exploring its potential as a therapeutic approach in breast cancer while addressing potential off-target effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!