Magnaporthe oryzae is a fungal plant pathogen of many grasses including rice. Since arabinoxylan is one of the major components of the plant cell wall of grasses, M. oryzae is likely to degrade this polysaccharide for supporting its growth in infected leaves. D-Xylose is released from arabinoxylan by fungal depolymerising enzymes and catabolized through the pentose pathway. The expression of genes involved in these pathways is under control of the transcriptional activator XlnR/Xlr1, conserved among filamentous ascomycetes. In this study, we identified M. oryzae genes involved in the pentose catabolic pathway (PCP) and their function during infection, including the XlnR homolog, XLR1, through the phenotypic analysis of targeted null mutants. Growth of the Δxlr1 strain was reduced on D-xylose and xylan, but unaffected on L-arabinose and arabinan. A strong reduction of PCP gene expression was observed in the Δxlr1 strain on D-xylose and L-arabinose. However, there was no significant difference in xylanolytic and cellulolytic enzyme activities between the Δxlr1 mutant and the reference strain. These data demonstrate that XLR1 encodes the transcriptional activator of the PCP in M. oryzae, but does not appear to play a role in the regulation of the (hemi-) cellulolytic system in this fungus. This indicates only partial similarity in function between Xlr1 and A. niger XlnR. The deletion mutant of D-xylulose kinase encoding gene (XKI1) is clearly unable to grow on either D-xylose or L-arabinose and showed reduced growth on xylitol, L-arabitol and xylan. Δxki1 displayed an interesting molecular phenotype as it over-expressed other PCP genes as well as genes encoding (hemi-) cellulolytic enzymes. However, neither Δxlr1 nor Δxki1 showed significant differences in their pathogeny on rice and barley compared to the wild type, suggesting that D-xylose catabolism is not required for fungal growth in infected leaves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fgb.2013.06.005 | DOI Listing |
Matrix Biol
February 2025
Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. Electronic address:
Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil. Electronic address:
Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, Ludwig Maximilian University of Munich (LMU), 80337 Munich, Germany.
Skin cancer is one of the most prevalent malignancies in the world, with increasing incidence. In 2022, the World Health Organization estimated over 1.5 million new diagnoses of skin malignancies, primarily affecting the older population.
View Article and Find Full Text PDFFoods
January 2025
Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
Litchi is one of the ancient fruits that originated in China, renowned for its high nutrition and rich flavor, and Xianjinfeng (XJF) stands as one of the most notable varieties in terms of its flavor. Investigating the metabolic changes in taste compounds during fruit development offers deeper insights into the formation patterns of fruit quality. In this study, we conducted extensive metabonomic research on the accumulation patterns of taste compounds (carbohydrates, organic acids, and amino acids) across three developmental stages of XJF litchi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!