Transforming growth factor-beta (TGF-β) is one of the main epithelial-mesenchymal transition (EMT)-inducing factors. In general, TGF-β-induced EMT promotes cell migration and invasion. TGF-β also acts as a potent regulator of pericellular proteolysis by regulating the expression and secretion of plasminogen activators. Urokinase-type plasminogen activator (uPA) is a serine protease that binds to its cell surface receptor (uPAR) with high affinity. uPA binding to uPAR stimulates uPAR's interaction with transmembrane proteins, such as integrins, to regulate cytoskeletal reorganization and cell migration, differentiation and proliferation. However, the influence of TGF-β and the uPA/uPAR system on EMT in retinal pigment epithelial (RPE) cells is still unclear. The purpose of this study was to determine the effect of TGF-β2, which is the predominant isoform in the retina, and the uPA/uPAR system on RPE cells. In this study, we first examined the effect of TGF-β2 and/or the inhibitor of uPA (u-PA-STOP(®)) on the proliferation of a human retinal pigment epithelial cell line (ARPE-19 cells). Treatment with TGF-β2 or u-PA-STOP(®) suppressed cell proliferation. Combination treatment of TGF-β2 and u-PA-STOP(®) enhanced cell growth suppression. Furthermore, western blot analysis, fibrin zymography and real-time reverse transcription PCR showed that that TGF-β2 induced EMT in ARPE-19 cells and that the expression of uPA and uPAR expression was up-regulated during EMT. The TGF-β inhibitor SB431542 suppressed TGF-β2-stimulated uPA expression and secretion but did not suppress uPAR expression. Furthermore, we seeded ARPE-19 cells onto Transwell chambers and allowed them to invade the collagen matrix in the presence of TGF-β2 alone or with TGF-β2 and u-PA-STOP(®). TGF-β2 treatment induced ARPE-19 cell invasion into the collagen gel. Treatment with a combination of TGF-β2 and the uPA inhibitor strongly inhibited ARPE-19 cell invasion compared with treatment with TGF-β2 alone. Furthermore, the interaction between uPA and ARPE-19 cells was analyzed using a surface plasmon biosensor system. The binding of uPA to ARPE-19 cells was observed. In addition, TGF-β2 significantly promoted the binding activity of uPA to ARPE-19 cells in a time-dependent or cell-number-dependent fashion. These results indicate that TGF-β-induced EMT-associated phenotype changes in ARPE-19 cells and the invasiveness of ARPE-19 cells into a collagen gel matrix are mediated, at least in part, by uPA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2013.06.020 | DOI Listing |
Int J Ophthalmol
January 2025
Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.
Aim: To test the effect of autophagy on inflammatory damage resulting from oxidative stress in adult retinal pigment epithelial cell line (ARPE-19).
Methods: ARPE-19 cells were pretreated with 200 and 600 µmol/L hydrogen peroxide (HO) at various time intervals. The changes of cell morphology, cell viability, reactive oxygen species (ROS) level, autophagic activity, and the inflammatory cytokines (TNFα, IL-6, and TGFβ) were measured at baseline and after treatment with autophagy inducer rapamycin (Rapa) and suppressor wortmannin (Wort) or shATG5.
The current research discusses polymer conjugation, formulation development, and evaluation of sorafenib-loaded polymeric nanomicelles of conjugated soluplus (solu-tin) and polymeric mixed nanomicelles of conjugated soluplus (solu-tin) with conjugated poloxamer 188 (polo-tin) for site-specific posterior segment delivery to the retina in managing retinoblastoma. Firstly, the soluplus and poloxamer 188 were conjugated with biotin by Fischer esterification reaction and evaluated by FTIR and H NMR for confirmation of covalent bond formation involving the carboxyl group of biotin and hydroxyl group of polymers. Secondly, the sorafenib-loaded solu-tin nanomicelles and mixed nanomicelles of solu-tin with polo-tin were formulated by the thin film hydration method.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
Age-related macular degeneration (AMD) is a major cause of vision loss among adults. We investigated the protective effects of passion fruit seed extract (PFSE) and its rich polyphenol piceatannol in an AMD cell model in which human retinal pigment epithelial ARPE-19 cells were exposed to hydrogen peroxide (HO). Using a cell viability WST-8 assay, we revealed that PFSE and piceatannol increased the cellular viability of ARPE-19 cells by 130% and 133%, respectively.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 40447, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Master Program of Pharmaceutical Manufacture, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan. Electronic address:
Ethnopharmacological Relevance: Kochiae Fructus, the ripe fruit of Kochia scoparia, is a traditional Chinese medicine commonly used to treat eye discomforts and vision problems. Although Kochiae Fructus is mentioned in many classical Chinese medical texts, its protective effects and the roles of its active phytochemicals in eye treatment still lack scientific exploration.
Aim Of The Study: This study aimed to clarify the protective effects and identify the active fractions and compounds of Kochiae Fructus against oxidative stress-induced retinal pigment epithelium (RPE) cell death.
Int J Mol Med
March 2025
Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.
Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!