Ischemia reperfusion injury and the immune system.

J Surg Res

Department of Surgery, Aristoteleion University of Thessaloniki, Thessaloniki, Greece. Electronic address:

Published: January 2014

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2013.05.094DOI Listing

Publication Analysis

Top Keywords

ischemia reperfusion
4
reperfusion injury
4
injury immune
4
immune system
4
ischemia
1
injury
1
immune
1
system
1

Similar Publications

Adipocyte-derived small extracellular vesicles exacerbate diabetic ischemic heart injury by promoting oxidative stress and mitochondrial-mediated cardiomyocyte apoptosis.

Redox Biol

December 2024

Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA; Department of Biomedical Engineering, UAB, Birmingham, AL, USA. Electronic address:

Background: Diabetes increases ischemic heart injury via incompletely understood mechanisms. We recently reported that diabetic adipocytes-derived small extracellular vesicles (sEV) exacerbate myocardial reperfusion (MI/R) injury by promoting cardiomyocyte apoptosis. Combining in vitro mechanistic investigation and in vivo proof-concept demonstration, we determined the underlying molecular mechanism responsible for diabetic sEV-induced cardiomyocyte apoptosis after MI/R.

View Article and Find Full Text PDF

Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis.

Redox Biol

December 2024

Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK. Electronic address:

Ca overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury.

View Article and Find Full Text PDF

Hemorrhagic shock is a significant cause of trauma-related mortality. Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a less-invasive aortic occlusion maneuver for severe hemorrhagic shock but potentially inducing oxidative stress injuries. In an animal model, this study investigated hydrogen gas inhalation therapy's potential to mitigate post-REBOA ischemia-reperfusion injuries (IRIs).

View Article and Find Full Text PDF

This study was to investigate the role of microRNA (miR)-330-5p derived from mesenchymal stem cells-secreted exosomes (MSCs-Exo) in cerebral ischemia-reperfusion injury (CI/RI) through targeting lysine N-methyltransferase SET domain containing 7 (SETD7). MSCs-Exo were separated and identified. MSCs-Exo were used to treat the middle cerebral artery occlusion (MCAO) rat model.

View Article and Find Full Text PDF

Chronic kidney disease is defined as a progressive loss of kidney function associated with impaired recovery after acute kidney injury. Renal ischemia-reperfusion (IR) induces oxidative stress and inflammatory responses leading to severe tissue damage, where incomplete or maladaptive repair accelerates renal fibrosis and aging. To investigate the role of the purinergic P2Y2 receptor (P2Y2R) in these processes, we used P2Y2R knockout (KO) mice subjected to IR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!