The European subtype of tick-borne encephalitis virus (TBEV-Eu) and louping-ill virus (LIV) are two closely related tick-borne flaviviruses. However, whereas the first is the cause of one of Europe's most important zoonoses, the latter most often only causes disease in sheep and grouse. TBEV-Eu is typically found in the forests of central and northeastern Europe, and LIV typically is found in sheep pastures in the British Isles. In the 1980s, however, LIV was isolated from sheep with encephalomyelitis in Norway. In the 1990s, the first cases of human TBEV were also detected in this country, but while Louping-ill in sheep is very rare, the number of human TBEV cases is increasing. No larger investigations of TBEV and/or LIV seroprevalence and distribution in Norway have been published. However, before such studies are initiated, it is pertinent to know if LIV and TBEV are potentially co-circulating. In the current study, we examined if antibodies against LIV and TBEV were found in wild cervids in one location (Farsund) in southern and one location (Molde) in northwestern Norway using a commercially available enzyme-linked immunosorbent assay for detection of anti-TBEV immunoglobulin G (IgG) and a hemagglutination inhibition test for anti-LIV IgG. Positive results were confirmed by serum neutralization tests. In Farsund, 22 of 54 cervids had antibodies against TBEV and 8 antibodies against LIV. In Molde, 1 of 64 cervids was confirmed positive for TBEV, whereas none were positive for LIV. This shows that TBEV and LIV may co-circulate in southern Norway and that virus(es) antigenetically very similar to TBEV may be found in northwestern Norway. The latter is intriguing, because the climatic conditions typical of TBEV locations should not be expected this far north.

Download full-text PDF

Source
http://dx.doi.org/10.1089/vbz.2012.1023DOI Listing

Publication Analysis

Top Keywords

liv tbev
12
tbev
10
liv
9
tick-borne encephalitis
8
encephalitis virus
8
louping-ill virus
8
co-circulate southern
8
southern norway
8
human tbev
8
antibodies liv
8

Similar Publications

Neurotropic Tick-Borne Flavivirus in Alpine Chamois (), Austria, 2017, Italy, 2023.

Viruses

January 2025

Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), 25124 Brescia, Italy.

The European subtype of tick-borne encephalitis virus (TBEV-Eur; species , family ) was the only tick-borne flavivirus present in central Europe known to cause neurologic disease in humans and several animal species. Here, we report a tick-borne flavivirus isolated from Alpine chamois () with encephalitis and attached ticks, present over a wide area in the Alps. Cases were detected in 2017 in Salzburg, Austria, and 2023 in Lombardy and Piedmont, Italy.

View Article and Find Full Text PDF

Context: Flaviviruses cause severe encephalitic or hemorrhagic diseases in humans. Its members, Kyasanur forest disease virus (KFDV) and Alkhumra hemorrhagic fever virus (ALKV), cause hemorrhagic fever and are prevalent in India and Saudi Arabia, respectively, while the tick-borne encephalitis virus (TBEV) causes a dangerous encephalitic infection in Europe and Asia. However, little information is available about the targets of immune responses for these deadly viruses.

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV) is an emerging pathogen in the Netherlands. Multiple divergent viral strains are circulating and the focal distribution of TBEV remains poorly understood. This may, however, be explained by differences in the susceptibility of tick populations for specific viruses and viral strains, and by viral strains having higher infection success in their local tick population.

View Article and Find Full Text PDF

The mechanisms utilized by different flaviviruses to evade antiviral functions of interferons are varied and incompletely understood. Using virological approaches, biochemical assays, and mass spectrometry analyses, we report here that the NS5 protein of tick-borne encephalitis virus (TBEV) and Louping Ill virus (LIV), two related tick-borne flaviviruses, antagonize JAK-STAT signaling through interactions with the tyrosine kinase 2 (TYK2). Co-immunoprecipitation (co-IP) experiments, yeast gap-repair assays, computational protein-protein docking and functional studies identify a stretch of 10 residues of the RNA dependent RNA polymerase domain of tick-borne flavivirus NS5, but not mosquito-borne NS5, that is critical for interactions with the TYK2 kinase domain.

View Article and Find Full Text PDF

We evaluated the temporal signal and substitution rate of tick-borne encephalitis virus (TBEV) using 276 complete open reading frame (ORF) sequences with known collection dates. According to a permutation test, the TBEV Siberian subtype (TBEV-S) data set has no temporal structure and cannot be applied for substitution rate estimation without other TBEV subtypes. The substitution rate obtained suggests that the common clade of TBEV (TBEV-common), including all TBEV subtypes and louping-ill virus (LIV), is characterized by the lowest rate (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!