A conserved aromatic residue regulating photosensitivity in short-wavelength sensitive cone visual pigments.

Biochemistry

Departments of Neuroscience and Physiology, Biochemistry and Molecular Biology, and Ophthalmology, SUNY Upstate Medical University, Syracuse, New York 13210, United States.

Published: July 2013

Visual pigments have a conserved phenylalanine in transmembrane helix 5 located near the β-ionone ring of the retinal chromophore. Site-directed mutants of this residue (F207) in a short-wavelength sensitive visual pigment (VCOP) were studied using UV-visible spectroscopy to investigate its role in photosensitivity and formation of the light-activated state. The side chain is important for pigment formation: VCOP(F207A), VCOP(F207L), VCOP(F207M), and VCOP(F207W) substitutions all bound 11-cis-retinal and formed a stable visual pigment, while VCOP(F207V), VCOP(F207S), VCOP(F207T), and VCOP(F207Y) substitutions do not. The extinction coefficients of all pigments are close, ranging between 35800 and 45600 M⁻¹ cm⁻¹. Remarkably, the mutants exhibit an up to 5-fold reduction in photosensitivity and also abnormal photobleaching behavior. One mutant, VCOP(F207A), forms an isomeric composition of the retinal chromophore after illumination comparable to that of wild-type VCOP yet does not release the all-trans-retinal chromophore. These findings suggest that the conserved F207 residue is important for a normal photoactivation pathway, formation of the active conformation and the exit of all-trans-retinal from the chromophore-binding pocket.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi400490gDOI Listing

Publication Analysis

Top Keywords

short-wavelength sensitive
8
visual pigments
8
retinal chromophore
8
visual pigment
8
conserved aromatic
4
aromatic residue
4
residue regulating
4
regulating photosensitivity
4
photosensitivity short-wavelength
4
sensitive cone
4

Similar Publications

Short-wave infrared (SWIR) imaging has a wide range of applications in civil and military fields. Over the past two decades, significant efforts have been devoted to developing high-resolution, high-sensitivity, and cost-effective SWIR sensors covering the spectral range from 0.9 μm to 3 μm.

View Article and Find Full Text PDF

Bismuth tungstate perovskite has been identified as a promising photoelectric material. Nevertheless, the wide band gap of bismuth tungstate leads to short-wavelength absorption of a single material with an attenuated photocurrent response, hindering its realization in biosensing applications. In this study, F, S co-doped BiWO was synthesized by heat treatment and combined with SnS and CdS to form a ternary heterojunction composite.

View Article and Find Full Text PDF

Wavelength Sensitive Plastic Photodissolution: Elucidating Quantum Yield Trends for Solar Activation Spectra.

Environ Sci Technol

December 2024

Department of Civil and Environmental Engineering, Utah State University, Old Main Hill, Logan, Utah 84321, United States.

Plastic photodissolution into dissolved organic carbon (DOC) is a key proposed loss pathway for plastic in aquatic environments. However, the specific solar excitation wavelengths that drive photodissolution remain unknown, limiting our ability to model and predict photodissolution rates in natural aquatic environments. To better understand the impact of solar excitation wavelength on plastic photodissolution rates, we measured the wavelength sensitivity of photodissolution for a variety of transparent and semitransparent commercial and postconsumer plastic films with wide-spanning polymer chemistries.

View Article and Find Full Text PDF

Near-infrared xanthene fluorescence probe for frequency upconversion fluorescence detection of HSO in evaluation of drug-induced hepatotoxicity.

Spectrochim Acta A Mol Biomol Spectrosc

November 2024

Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China. Electronic address:

Article Synopsis
  • * A newly designed FUCL probe, PT-1, shows high sensitivity and selectivity in detecting HSO, with a detection limit significantly lower than traditional methods (43 nM vs. 93 nM).
  • * PT-1 not only targets mitochondria for real-time monitoring of HSO in living cells but also successfully tracks HSO levels in mice experiencing drug-induced liver injury using FUCL imaging.
View Article and Find Full Text PDF

The early diagnosis of tumorigenesis is crucial for clinical treatment, but the resolution and sensitivity of conventional short-wavelength biomarkers are not ideal because of the complicated interference in living tissue. Herein, a nicotinamide adenine dinucleotide (NAD)-responsive probe with deep-red emissive ratiometric fluorescence was synthetized as a promising target for energy metabolism patterns during tumorigenesis. Interestingly, the solvents HPO and 2,2'-dithiodibenzoic acid enhanced the red emission (640 and 680 nm) of o-phenylenediamine-based carbon dots (CDs), leading to the formation of a nanoscale graphite-like skeleton covered with -P=O, -CONH-, -COOH and -NH on their surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!