Purpose: ATP is an essential transmitter/cotransmitter in neuron function and pathophysiology and has recently emerged as a potential contributor to prolonged seizures (status epilepticus) through the activation of the purinergic ionotropic P2X7 receptor (P2X7R). Increased P2X7R expression has been reported in the hippocampus, and P2X7R antagonists reduced seizure-induced damage to this brain region. However, status epilepticus also produces damage to the neocortex. The present study was designed to characterize P2X7R in the neocortex and assess effects of P2X7R antagonists on cortical injury after status epilepticus.
Methods: Status epilepticus was induced in mice by intraamygdala microinjection of kainic acid. Specific P2X7R inhibitors were administered into the ventricle before seizure induction, and cortical electroencephalography and behavior was recorded to assess seizure severity. P2X7R expression was examined in neocortex up to 24 h after status epilepticus, in epileptic mice, and in resected neocortex from patients with pharmacoresistent temporal lobe epilepsy (TLE). In addition, the induction of P2X7R after status epilepticus was investigated using transgenic P2X7R reporter mice, which express enhanced green fluorescent protein under the control of the p2x7r promoter.
Key Findings: Status epilepticus resulted in increased P2X7R protein levels in the neocortex of mice. Neocortical P2X7 receptor levels were also elevated in mice that developed epilepsy after status epilepticus and in resected neocortex from patients with pharmacoresistent TLE. Immunohistochemistry determined that neurons were the major cell population transcribing the P2X7R in the neocortex within the first 8 h after status epilepticus, whereas in epileptic mice, P2X7R up-regulation occurred in microglia as well as in neurons. Pretreatment of mice with the specific P2X7R inhibitor A-438079 reduced electrographic and clinical seizure severity during status epilepticus and reduced seizure-induced neuronal death in the neocortex.
Significance: Our findings identify neurons in the neocortex as an important site of P2X7R up-regulation after status epilepticus and in epilepsy, and provide support for the possible use of P2X7R antagonists for the treatment of status epilepticus and prevention of seizure-induced brain damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/epi.12257 | DOI Listing |
Seizure
January 2025
Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, PR China; Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China. Electronic address:
Background: The etiology of status epilepticus (SE) in Tibet has not yet been reported. We aimed to establish the etiological baseline of SE in the Tibet Autonomous Region in China and compare it with a SE cohort from a regional neuroscience centre in Sichuan, Southwestern China to reveal whether there was a unique etiology distribution in the Tibetan region.
Methods: We retrospectively captured clinical data of patients diagnosed with SE in the People's Hospital of Xizang Autonomous Region from January 2015 to December 2020.
Life (Basel)
January 2025
Neurology Service, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" Iași University of Life Sciences, 700489 Iași, Romania.
Hepatic encephalopathy (HE) in dogs is a metabolic disorder of the central nervous system that occurs secondarily to liver dysfunctions, whether due to acquired or congenital causes. A portosystemic shunt is the presence of abnormal communications between the hepatic vessels (portal and suprahepatic veins). As a result of this, the blood brought from the digestive tract through the portal vein bypasses the liver, and the unmetabolized components of the portal bloodstream enter directly into systemic circulation, causing clinical symptoms of metabolic encephalopathy (HE).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell'Istria, 65, 34137 Trieste, Italy.
Pathogenic variants in , encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo variant identified by whole exome sequencing performed more than 10 years after the patient's death.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.
View Article and Find Full Text PDFChildren (Basel)
December 2024
Department of Oncology and Hematology, Children's Hospital Zagreb, Klaićeva 16, 10000 Zagreb, Croatia.
: Recent advances in childhood acute lymphoblastic leukemia (ALL) and lymphoblastic lymphoma (LL) management provide higher survival rates at the cost of increased toxicities. Acute neurotoxicity affects up to 10% of patients, requiring rapid recognition and treatment. : A retrospective observational study was performed to determine the frequency, clinical manifestations, radiological characteristics, treatment options and outcome of acute neurological adverse events in pediatric patients with lymphoid malignancies at the Department of Oncology and Hematology, Children's Hospital Zagreb, Croatia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!