This study aims to examine the effectiveness of amendments for risk-based land management of shooting range soils and to explore the effectiveness of amendments applied to sites with differing soil physiochemical parameters. A series of amendments with differing mechanisms for stabilisation were applied to four shooting range soils and aged for 1 year. Chemical stabilisation was monitored by pore water extraction, toxicity characteristic leaching procedure (TCLP) and the physiologically based extraction test (PBET) over 1 year. The performance of amendments when applied in conditions reflecting field application did not match the performance in the batch studies. Pore water-extractable metals were not greatly affected by amendment addition. TCLP-extractable Pb was reduced significantly by amendments, particularly lime and magnesium oxide. Antimony leaching was reduced by red mud but mobilised by some of the other amendments. Bioaccessible Pb measured by PBET shows that bioaccessible Pb increased with time after an initial decrease due to the presence of metallic fragments in the soil. Amendments were able to reduce bioaccessible Pb by up to 50 %. Bioaccessible Sb was not readily reduced by soil amendments. Soil amendments were not equally effective across the four soils.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-013-1918-0DOI Listing

Publication Analysis

Top Keywords

soil amendments
12
amendments
10
risk-based land
8
land management
8
effectiveness amendments
8
shooting range
8
range soils
8
amendments applied
8
effectiveness chemical
4
chemical amendments
4

Similar Publications

Shaping rhizocompartments and phyllosphere microbiomes and antibiotic resistance genes: The influence of different fertilizer regimes and biochar application.

J Hazard Mater

January 2025

Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Understanding the impact of different soil amendments on microbial communities and antibiotic resistance genes (ARGs) dissemination is crucial for optimizing agricultural practices and mitigating environmental risks. This study investigated the effects of different fertilizer regimes and biochar on plant-associated bacterial communities and ARGs dissemination. The biochar's structural and chemical characteristics were characterized using scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, revealing a porous architecture with diverse functional groups.

View Article and Find Full Text PDF

Dolomite dissolution, pH neutralization, and potentially toxic element immobilization in stormwater bioretention beds.

Sci Total Environ

January 2025

Temple University, Department of Civil and Environmental Engineering, 1947 North 12(th) Street, Philadelphia, PA 19122, United States. Electronic address:

The importance of pH in stormwater bioretention beds cannot be overstated since it impacts plant and microbial populations and removal of potentially toxic elements (PTEs) from stormwater runoff. This study investigated the effects of dolomite amendment on pH neutralization and subsequent PTE immobilization in bioretention media. To assess dolomite dissolution, pH neutralization, and PTE immobilization, engineered bioretention media was amended with different dolomite ratios and samples of dolomite-amended media were collected from two bioretention beds, one and two months after installation.

View Article and Find Full Text PDF

Evaluating a Soil Amendment for Cadmium Mitigation and Enhanced Nutritional Quality in Faba Bean Genotypes: Implications for Food Safety.

Plants (Basel)

January 2025

Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.

Soil amendments combined with low cadmium (Cd)-accumulating crops are commonly used for remediating Cd contamination and ensuring food safety. However, the combined effects of soil amendments and the cultivation of faba beans ( L.)-known for their high nutritional quality and low Cd accumulation-in moderately Cd-contaminated soils remain underexplored.

View Article and Find Full Text PDF

Synergistic Effect of Sugarcane Bagasse and Zinc Oxide Nanoparticles on Eco-Remediation of Cadmium-Contaminated Saline Soils in Wheat Cultivation.

Plants (Basel)

December 2024

Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary.

Soil contamination with cadmium (Cd) and salinity poses a significant challenge, affecting crop health and productivity. This study explores the combined application of sugarcane bagasse (SCB) and zinc oxide nanoparticles (ZnO NPs) to mitigate the toxic effects of Cd and salinity in wheat plants. Field experiments conducted in Cd-contaminated saline soils revealed that the application of SCB (0, 5, and 10 t ha) and ZnO NPs (0, 12.

View Article and Find Full Text PDF

Biochar Amendment Alleviates the Risk of High-Salinity Saltwater Intrusion for the Growth and Yield of Rice L.).

Recent Adv Food Nutr Agric

January 2025

Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.

Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.

Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!