Theoretical and experimental studies on isotachophoresis in multi-moving chelation boundary system formed with metal ions and EDTA.

Analyst

Laboratory of Bioseparation and Analytical Biochemistry, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: September 2013

In this paper, a general mode and theory of moving chelation boundary based isotachophoresis (MCB-based ITP), together with the concept of decisive metal ion (DMI) having the maximum complexation constant (lg Kmax) with the chelator, were developed from a multi-MCB (mMCB) system. The theoretical deductions were: (i) the reaction boundary velocities in the mMCB system at steady state were equal to each other, resulting in a novel MCB-based ITP separation of metal ions; (ii) the boundary directions and velocities in the system were controlled by the fluxes of chelator and DMI, rather than other metal ions; and (iii) a controllable stacking of metal ions could be simultaneously achieved in the developed system. To demonstrate the deductions, a series of experiments were conducted by using model chelator of EDTA and metal ions of Cu(II) and Co(II) due to characteristic colors of blue [Cu-EDTA](2-) and pink [Co-EDTA](2-) complexes. The experiments demonstrated the correctness of theoretical deductions, indicating the validity of the developed model and theory of ITP. These findings provide guidance for the development of MRB-based ITP separation and stacking of metal ions in biological sample matrix and heavy metal ions in environmental samples.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3an00643cDOI Listing

Publication Analysis

Top Keywords

metal ions
28
chelation boundary
8
metal
8
mcb-based itp
8
mmcb system
8
theoretical deductions
8
itp separation
8
stacking metal
8
ions
7
system
5

Similar Publications

The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.

View Article and Find Full Text PDF

Cuproptosis is a newly discovered mode of cell death, which is caused by excess copper and results in cell death via the mitochondrial pathway. However, the complex tumor microenvironment (TME) is characterized by many factors, including high levels of glutathione and lack O, limit the application of traditional cuproptosis agents in antitumor therapy. Herein, we report a hyaluronic acid modified copper-manganese composite nanomedicine (CMCNs@HA) to remodel the TME and facilitate efficient cuproptosis in tumor.

View Article and Find Full Text PDF

Extracellular polymeric substances (EPS) can effectively attenuate heavy metal mobility in aquatic ecosystems and reduce metal toxicity to cells. However, a systematic study of microalgae EPS responses and their adsorption behaviors, characteristics, and mechanisms under different heavy metal exposures has not been performed. In this study, EPS extracted from Chlamydomonas reinhardtii CC-125 was analyzed for compositional changes (monosaccharides and proteins) under Cd, Cu, Pb, and Zn treatments.

View Article and Find Full Text PDF

The acid mine drainage (AMD) is characterized by its highly acidic nature and elevated concentrations of metal ions, thereby exerting significant impacts on both human health and the environment. This study employed a dispersed alkaline substrate (DAS) consisting of thermal activation magnesite and pine shavings for the treatment of AMD. The investigation focused on determining the optimal thermal activation conditions of magnesite, evaluating the effectiveness of the DAS in regulating acidity and removing metal ions from AMD, identifying critical factors influencing treatment efficiency, and conducting toxicity assessment on the effluent.

View Article and Find Full Text PDF

Characterization of a novel D-sorbitol dehydrogenase from Faunimonas pinastri A52C2.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.

The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!