Hydroxyapatite chromatography is a very important step in the purification of voltage-dependent anion channels (VDACs) and several members of solute carrier family 25 (Slc25) from isolated mitochondria. In the presence of Triton X-100, VDACs and Slc25 members present a peculiar property, i.e., a lack of interaction with hydroxyapatite, resulting in their presence in the flow-through fraction of hydroxyapatite chromatography. This property has allowed selective isolation of VDACs and Slc25 members from a mixture of total mitochondrial proteins. However, the reason why only these few proteins are selectively obtained in the presence of Triton X-100 from the flow-though fraction of hydroxyapatite chromatography has not yet been adequately understood. In this study, when we examined the protein species in the flow-through fractions by proteomic analysis, VDAC isoforms, Slc25 members, and some other membrane proteins were identified. All the mitochondrial proteins had in common high hydrophobicity over their entire protein sequences. When the proteins were fused to soluble proteins, the fused proteins showed affinity for hydroxyapatite even in the presence of Triton X-100. Based on these results, we discussed the molecular basis of the interactions between proteins and hydroxyapatite in the presence of Triton X-100.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2013.05.079DOI Listing

Publication Analysis

Top Keywords

presence triton
20
triton x-100
20
hydroxyapatite presence
16
mitochondrial proteins
12
hydroxyapatite chromatography
12
slc25 members
12
proteins
9
molecular basis
8
basis interactions
8
proteins hydroxyapatite
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!