Gelling concept combining chitosan and alginate-proof of principle.

Biomacromolecules

Norwegian Biopolymer Laboratory, Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway.

Published: August 2013

Biocompatible hydrogels are very interesting for applications in, e.g., tissue engineering and for immobilization of cells, such as calcium-alginate gels where the calcium ions form specific interactions with the guluronic acid units. We here report on a new gelling system of chitosan and alginate containing only mannuronic acid (poly-M), which are prepared using the following steps: (i) mixing at a pH well above 7 where the chitosan is mainly uncharged; (ii) controlled lowering of the pH by adding the slowly hydrolyzing d-glucono-δ-lactone (GDL); (iii) formation of a homogeneous chitosan-alginate gel upon leaving the mixture at room temperature. Some properties of the new gelling system are demonstrated herein by adding controlled amounts of GDL to (i) a mixture of a polymeric and neutral-soluble chitosan with poly-M oligomers (MO) and (ii) a mixture of poly-M and neutral-soluble chitosan oligomers. The neutral-solubility of the polymeric chitosan is achieved by selecting a polymeric chitosan with an intermediate degree of acetylation of 40%, while the neutral-solubility of the fully de-N-acetylated chitosan oligomers (CO) is obtained by selecting oligomers with a chain length below 10. A proof of concept of the new gelling system is demonstrated by measuring the gel strengths of the polymeric chitosan-MO, and a poly-M-CO. The results show that the gel strength increases with decreasing the pH from neutral to 5, and that the gel strength decreases with increasing ionic strength, indicative of an ionic gel formation. Poly-M formed relatively strong gels with CO while an alginate highly enriched in Guluronic acid formed gels of very limited mechanical strength, suggesting the importance of the match in charge distances in the poly-M and chitosan, both with diequatorially linked sugar units in the (4)C1 conformation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm400610bDOI Listing

Publication Analysis

Top Keywords

gelling system
12
chitosan
9
guluronic acid
8
system demonstrated
8
neutral-soluble chitosan
8
chitosan oligomers
8
polymeric chitosan
8
gel strength
8
poly-m
5
gel
5

Similar Publications

The objective of this study was to investigate the effect of β-glucan on the pasting, gelling, rheological properties, and multi-level structures of the highland barley (HB) starch after dynamic high pressure microfluidization (DHPM) treatment, exploring the inhibition mechanisms of starch retrogradation by endogenous β-glucan after DHPM. DHPM treatment led to a decrease in the viscosity (K values from 161.1 to 54.

View Article and Find Full Text PDF

Eutectogel-Based Drug Delivery: An Innovative Approach for Atenolol Administration.

Pharmaceutics

December 2024

Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy.

Hypertension affects 32% of adults worldwide, leading to a significant global consumption of cardiovascular medications. Atenolol, a β-adrenergic receptor blocker, is widely prescribed for cardiovascular diseases such as hypertension, angina pectoris, and myocardial infarction. According to the Biopharmaceutics Classification System (BCS), atenolol belongs to Class III, characterized by high solubility but low permeability.

View Article and Find Full Text PDF

Spinal cord trauma leads to the destruction of the highly organized cytoarchitecture that carries information along the axis of the spinal column. Currently, there are no clinically accepted strategies that can help regenerate severed axons after spinal cord injury (SCI). Hydrogels are soft biomaterials with high water content that are widely used as scaffolds to interface with the central nervous system (CNS).

View Article and Find Full Text PDF

Specific Ion Effects in Hydrogels.

Molecules

December 2024

Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasourg, Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, 1 Rue Eugène Boeckel, F-67000 Strasbourg, France.

Specific ion effects on the structure and function of many biological macromolecules, their associations, colloidal systems, interfacial phenomena, and even "simple" electrolytes solutions are ubiquitous. The molecular origin of such phenomena is discussed either as a salt-induced change of the water structure (the hydrogen bond network) or some specific (solvent mediated) interactions of one or both of the ions of the electrolyte with the investigated co-solute (macromolecules or colloidal particles). The case of hydrogels is of high interest but is only marginally explored with respect to other physico-chemical systems because they are formed through the interactions of gelling agents in the presence of water and the added electrolyte.

View Article and Find Full Text PDF

Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!