Adipocytes mainly function as energy storage and endocrine cells. Adipose tissues showed the biological and genetic difference based on their depots. The difference of adipocytes between depots might be influenced by the inherent genetic programing for adipogenesis. We used RNA-seq technique to investigate the transcriptomes in 3 adipose tissues of omental (O), subcutaneous (S) and intramuscular (I) fats in cattle. Sequence reads were obtained from Illumina HiSeq2000 and mapped to the bovine genome using Tophat2. Differentially expressed genes (DEG) between adipose tissues were detected by EdgeR. We identified 5797, 2156, and 5455 DEGs in the comparison between OI, OS, and IS respectively and also found 5657 DEGs in the comparison between the intramuscular and the combined omental and subcutaneous fats (C) (FDR<0.01). Depot specifically up- and down- regulated DEGs were 853 in S, 48 in I, and 979 in O. The numbers of DEGs and functional annotation studies suggested that I had the different genetic profile compared to other two adipose tissues. In I, DEGs involved in the developmental process (eg. EGR2, FAS, and KLF7) were up-regulated and those in the immune system process were down-regulated. Many DEGs from the adipose tissues were enriched in the various GO terms of developmental process and KEGG pathway analysis showed that the ECM-receptor interaction was one of commonly enriched pathways in all of the 3 adipose tissues and also functioned as a sub-pathway of other enriched pathways. However, genes involved in the ECM-receptor interaction were differentially regulated depending on the depots. Collagens, main ECM constituents, were significantly up-regulated in S and integrins, transmembrane receptors, were up-regulated in I. Different laminins were up-regulated in the different depots. This comparative transcriptome analysis of three adipose tissues suggested that the interactions between ECM components and transmembrane receptors of fat cells depend on the depot specific adipogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689780PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066267PLOS

Publication Analysis

Top Keywords

adipose tissues
16
omental subcutaneous
8
degs comparison
8
comparative transcriptome
4
transcriptome analysis
4
adipose
4
analysis adipose
4
tissues
4
tissues reveals
4
reveals ecm-receptor
4

Similar Publications

Lysophosphatidylcholine-Induced Aberrant Adipogenesis in Mesenchymal Stem Cells and Impaired Antibacterial Function in Adipocytes of Creeping Fat.

J Crohns Colitis

January 2025

Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.

Background And Aim: Creeping fat (CF) in Crohn's disease (CD) is characterized by hyperplastic mesenteric adipose tissue (MAT) encasing fibrotic intestinal segments. CF exhibits disruptions in microbiota and lipid metabolism, particularly in lysophospholipids (LPC). This study aims to elucidate the impact of LPC on adipogenic differentiation of mesenchymal stem cells in CF and its effects on immune defense functions in the differentiated adipocytes.

View Article and Find Full Text PDF

Global health is increasingly challenged by the growing prevalence of obesity and its associated complications. Quercetin, one of the most important dietary flavonoids, is being explored as an effective therapy for obesity with its mechanism remains understudied. Here in this study, it is demonstrated that quercetin intervention significantly reverses obesity-related phenotypes through reshaping the overall structure of microbiota, especially boosting colonization of the beneficial gut commensal Akkermansia muciniphila (A.

View Article and Find Full Text PDF

Cardiovascular disease affects millions of people worldwide and often presents with other conditions including metabolic, renal and neurological disorders. A variety of secreted factors from multiple organs/tissues (proteins, nucleic acids and lipids) have been implicated in facilitating organ cross-talk that may contribute to the development of multimorbidity. Secreted proteins have received the most attention, with the greatest body of research related to factors released from adipose tissue (adipokines), followed by skeletal muscle (myokines).

View Article and Find Full Text PDF

Most patients with lung cancer experience cancer cachexia (CC), a syndrome of skeletal muscle and adipose tissue wasting. Knowledge of body composition changes in patients is limited, however, because most studies have been cross-sectional, comparing patients with non-cancer controls or patients with and without CC. Few studies, in contrast, have evaluated body composition in patients with lung cancer over time.

View Article and Find Full Text PDF

Inflammation of adipose tissue is a contributing factor to many chronic diseases associated with obesity. We previously showed that micronutrients such as vitamin D (VD) limited this metabolic inflammation by decreasing inflammatory markers expression including miR-155 (microRNA-155) or miR-146a in different in vitro and in vivo models. These miRNAs could be incorporated into extracellular vesicles (EVs) in order to modulate the activity of target cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!